
# 3-1. 平面図形 合同の証明 複合問題ほか 2002年度出題

# 【問1】

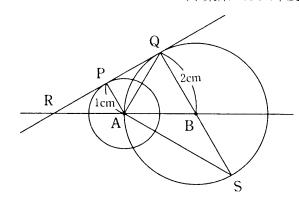
図は、線分ABを直径とする半円Oの円周上に $\widehat{BC} = \widehat{CD}$ となる点C、Dをとり、線分ADとBCの延長線の交点をP、線分ACとBDの交点をQとしたものである。次の[1]、[2]の問いに答えなさい。

(秋田県 2002年度)

- [1]  $\triangle ABC \equiv \triangle APC$ であることを証明しなさい。
- (2) 線分DAとDBの長さの比が3:4のとき、△PABと四角形PDQCの面積の 比を求めなさい。



|     | 証明               |  |
|-----|------------------|--|
|     | △ABCと△APCにおいて    |  |
|     | ZIBCEZIII CICASU |  |
|     |                  |  |
|     |                  |  |
|     |                  |  |
|     |                  |  |
|     |                  |  |
|     |                  |  |
|     |                  |  |
|     |                  |  |
| (1) |                  |  |
| (1) |                  |  |
|     |                  |  |
|     |                  |  |
|     |                  |  |
|     |                  |  |
|     |                  |  |
|     |                  |  |
|     |                  |  |
|     |                  |  |
|     |                  |  |
|     |                  |  |
|     |                  |  |
| (0) |                  |  |
| (2) | :                |  |
|     |                  |  |


## 【問2】

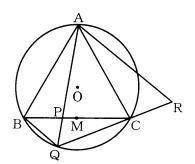
図のように、点A、Bをそれぞれ中心とする半径1 cmの円A、半径2 cmの円Bが交わり、点Aは円Bの円周上にある。点P、Qはそれぞれ円A、円Bの円周上の点で、直線PQは2円の共通接線である。また、点Rは直線PQと直線ABの交点で、点SはQBの延長と円Bの交点である。このとき、次の(1)、(2)の問いに答えなさい。

(千葉県 2002年度)

[1]  $\triangle PRA \equiv \triangle PQA$ であることを証明しなさい。

(2) ASの長さを求めなさい。



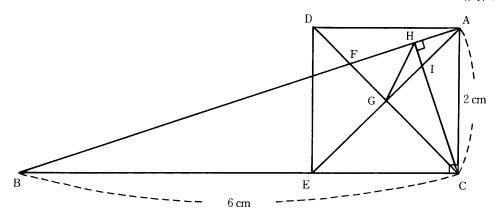

|     | [  |  |
|-----|----|--|
|     | 証明 |  |
|     |    |  |
|     |    |  |
|     |    |  |
|     |    |  |
|     |    |  |
|     |    |  |
|     |    |  |
|     |    |  |
|     |    |  |
|     |    |  |
|     |    |  |
|     |    |  |
|     |    |  |
| (1) |    |  |
| (-) |    |  |
|     |    |  |
|     |    |  |
|     |    |  |
|     |    |  |
|     |    |  |
|     |    |  |
|     |    |  |
|     |    |  |
|     |    |  |
|     |    |  |
|     |    |  |
|     |    |  |
|     |    |  |
|     |    |  |
| (2) |    |  |
| (4) | cm |  |

## 【問3】

図で、円Oは、1辺の長さが6 cmの正三角形ABCの外接円であり、点Mは辺BCの中点、点Pは線分BM上の点である。線分APの延長と円Oとの交点をQとし、線分QCのCのほうへの延長上の点で、BQ=CRとなる点をRとする。各間いに答えよ。なお、必要であれば、円周率は $\pi$ を用いること。

(奈良県 2002年度)

- [1] **ZBAP=20**°のとき、**ZAPC**の大きさを求めよ。
- |2|  $\triangle ABQ \equiv \triangle ACR$ であることを証明せよ。
- (3) 点Pが、線分BM上を頂点Bから点Mまで動くとき、点Rが動いてできる線の長さを求めよ。ただし、点Pが頂点Bに一致するときは、点Rは頂点Cの位置にあるものとする。




| (1) | 度  |  |  |
|-----|----|--|--|
|     | 証明 |  |  |
|     |    |  |  |
|     |    |  |  |
|     |    |  |  |
| (2) |    |  |  |
|     |    |  |  |
|     |    |  |  |
|     |    |  |  |
| (2) |    |  |  |
| (3) | cm |  |  |

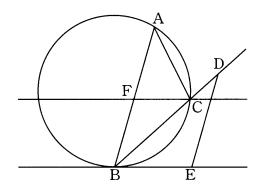
#### 【問4】

図のように、AC=2 cm、BC=6 cmの直角三角形ABCと、辺ACを1辺とする正方形ADECがあり、対角線CDとAB、AEとの交点をそれぞれF、Gとする。また、点Cから辺ABにひいた垂線とAB、AEとの交点をそれぞれH、Iとする。点Hと点Gを結ぶ。このとき、①、④では に適当な数を書き入れ、②、③では指示に従って答えなさい。(無理数はそのまま使いなさい。)

(岡山県 2002年度)



- ① ABの長さは cmである。
- ② CHの長さはいくらか。答えを求めるまでの過程も書いて答えなさい。
- ③  $\triangle ACI \equiv \triangle DAF$ を証明しなさい。
- ④  $\triangle$ GHIの面積は $^{(r)}$  cm<sup>2</sup>である。また、3点C、I、Eを通る円の半径は $^{(r)}$  cmである。


| 1)       |         |    |
|----------|---------|----|
|          |         |    |
|          |         |    |
| <b>(</b> |         |    |
| 2        |         |    |
|          |         |    |
|          | 答 CHの長さ | cm |
|          | 証明      |    |
|          |         |    |
|          |         |    |
|          |         |    |
| 3        |         |    |
|          |         |    |
|          |         |    |
|          |         |    |
|          |         |    |
| 4        |         |    |

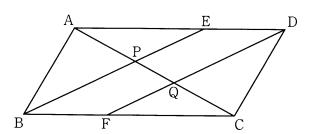
## 【問5】

図のように、 $\triangle$ ABCは円に内接し、線分BCの延長上に、AB=BDとなる点Dをとる。点Dを通りABに平行な直線と、点Bにおける接線との交点をEとする。さらに、直線BEに平行で点Cを通る直線と線分ABとの交点をFとする。次の(1)、(2)に答えなさい。

(山口県 2002年度)

- [1] △ABC≡△BDEであることを証明しなさい。
- [2] AB=8 cm, BC=5 cmのとき, 線分AFの長さを求めなさい。




|     | 証明 |  |
|-----|----|--|
|     |    |  |
|     |    |  |
|     |    |  |
| (1) |    |  |
|     |    |  |
|     |    |  |
|     |    |  |
|     |    |  |
| (2) | cm |  |

## 【問6】

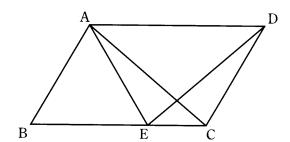
図のように、平行四辺形ABCDがある。 $\angle$ Bの二等分線と辺ADの交点をE、 $\angle$ Dの二等分線と辺BCの交点をFとする。また、対角線ACと線分BE、DFの交点をそれぞれP、Qとする。このとき、次の(1)・(2)の問いに答えなさい。ただし、AD>ABとする。

(高知県 2002年度)

(1)  $\triangle ABP \equiv \triangle CDQ$ であることを証明せよ。



|2| AB=5 cm, AD=13 cm, ∠BAC=90° のとき, 線分PQの長さを求めよ。


|     | <b>≑</b> ₹111          |  |
|-----|------------------------|--|
|     | 証明<br>AARRI AGROSTINIT |  |
|     | △ABPと△CDQにおいて          |  |
|     |                        |  |
|     |                        |  |
|     |                        |  |
|     |                        |  |
|     |                        |  |
|     |                        |  |
|     |                        |  |
|     |                        |  |
|     |                        |  |
| (1) |                        |  |
| (1) |                        |  |
|     |                        |  |
|     |                        |  |
|     |                        |  |
|     |                        |  |
|     |                        |  |
|     |                        |  |
|     |                        |  |
|     |                        |  |
|     |                        |  |
|     |                        |  |
|     | ゆえに △ABP≡△CDQ          |  |
|     |                        |  |
| (2) | cm                     |  |
|     |                        |  |

## 【問7】

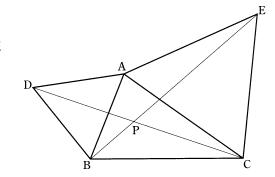
図のような平行四辺形ABCDがあり、辺BC上にAB=AEとなる点Eをとる。このとき、次の[1]、[2]の問いに答えなさい。

(佐賀県 2002年度)

- (1) △ABC≡△EADであることを証明しなさい。
- [2] AB=4 cm, BC=6 cmで, AEが ∠DABの二等分線であると き, 次の(ア)~(ウ)の各問いに答えなさい。
  - (ア) ∠ABCの大きさを求めなさい。



- (イ) △ABCの面積を求めなさい。
- (ウ) 線分DEの長さを求めなさい。


| (1) |     |                 |  |
|-----|-----|-----------------|--|
|     | (ア) | 度               |  |
| (2) | (1) | cm <sup>2</sup> |  |
|     | (ウ) | cm              |  |

# 【問8】

図の $\triangle$ ABCで、その外側に2つの正三角形 $\triangle$ ABD、 $\triangle$ ACEをつくり、BEとCDの交点をPとする。このとき、次の[1]  $\sim$ [4]の問いに答えなさい。

(宮崎県 2002年度)

- (1)  $\triangle ADC \equiv \triangle ABE$ を証明しなさい。
- [2] 点A, B, C, D, E, Pのうち, 同じ円周上にある4点は何組ありますか。また, そのうちの1組を選び, その4点を書きなさい。



- (3) **ZBPC**の大きさを求めなさい。
- [4] BC=3 cmのとき、 $\triangle$ BPCの外接円の半径を求めなさい。

| (1) | 証明 |      |    |  |
|-----|----|------|----|--|
| (2) | 組  | 4点   |    |  |
| (3) | ∠B | BPC= | 度  |  |
| (4) |    |      | cm |  |