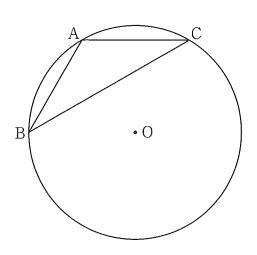
5-8. 平面図形 その他の証明 複合問題ほか 2011年度出題

【問1】

図のように、半径6 cmの円Oの円周上に3点A、B、Cがあります。AB=AC、 \angle ABC=30° とします。点Dは、点Bを出発して、点Aをふくまない弧BC上を、点Cまで移動します。2点C、D間の距離が最大となるとき、四角形ABDCの面積は $27\sqrt{3}$ cm²であることを説明しなさい。ただし、四角形ABDCの面積を求める式も書きなさい。

(北海道 2011年度)



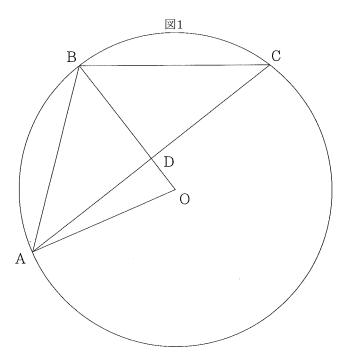
〔説明〕	

【問2】

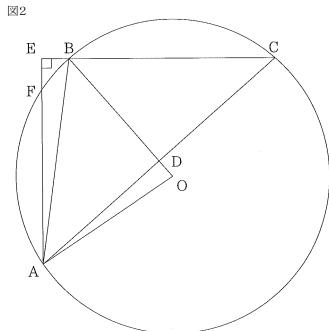
図1のような、線分OAを半径とする円Oがあります。円Oの周上に2点B、CをAB=BC、 \angle ABC>90°となるようにとり、三角形ABCをつくります。また、点Oと点Bを結び、線分OBと辺ACとの交点をDとします。次の(1)、(2)の問いに答えなさい。

(宮城県 2011年度)

(1) ∠OBA=∠OBCであることを証明しなさい。



- (2) AB=4 cm, AC=6 cmとします。図2は,図1において,辺BCをBの方へ延長した直線上に,点EをCE⊥AEとなるようにとり,点Aと点Eを結んだものです。また,線分AEと円Oとの交点のうち,点A以外の点をFとします。次の①,②の問いに答えなさい。
 - ① 円0の半径を求めなさい。
 - ② 線分AFの長さを求めなさい。

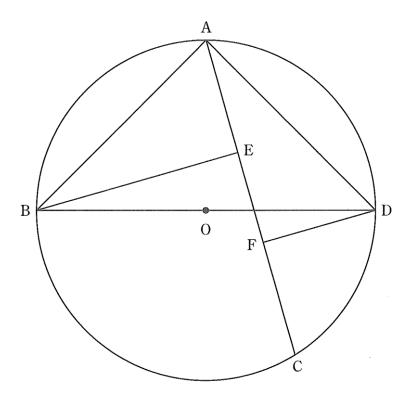


(1)	〔証明〕		
(2)	1	cm	
(2)	2	cm	

【問3】

図において、4点A, B, C, DはPOの周上の点で、AB=ADであり、線PBDはPOの直径である。また、P2点P8、P8 のから線P9 のである。また、P8 のである。また、P8 のである。また、P8 のである。また、P8 のである。また、P8 のである。このとき、P9 のである。このとを、P9 のでなる。このとを、P9 のでなる。

(福島県 2011年度)



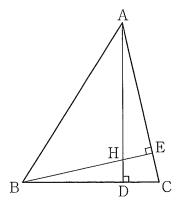
						ı
					Ĺ	۲
					ĦЩ	₫π
					ラウ	: HI
					1)	月)
_						

【問4】

 \angle A=45° である三角形ABCがある。右の図のように、頂点A、Bからそれぞれ辺BC、ACに垂線をひき、辺BC、ACとの交点をそれぞれD、Eとしたところ、BD=3 cm、DC=1 cmとなった。このとき、裕太さんは、合同な三角形や相似な三角形に着目して、三角形ABCの面積を求めることにした。垂線AD、BEの交点をHとして、次の問1~問3に答えなさい。

問1 三角形AEHと三角形BECは合同で、AH=BCである。このことを、裕太さんは次のように証明した。アー~ ウーには適する記号や数値を、〔 ⑤ 〕、 〔 ⑥ 〕には適する言葉を、それぞれ入れなさい。また、 には、 ∠EAHと ∠EBCが等しいことの説明を書き、証明を完成させなさい。

(群馬県 2011年度)



証明

問2 三角形BDHと相似な三角形をすべて書きなさい。

問3 相似な三角形を利用して、線分HDの長さを求めなさい。また、三角形ABCの面積を求めなさい。

	ア			
	イ			
	ウ			
	(b)			
	()			
	[∠EA	Hと∠EBCが等しいことの説明〕		
問1				
問2				
		線分HDの長さ	cm	
問3				
		→ 7 T/ADG © T1#	2	
		三角形ABCの面積	cm^2	

【問5】

図の \triangle ABCにおいて、辺AB上に点Dを、DB=ACとなるようにとる。辺BCの中点Eと、線分ADの中点Fを結ぶ直線が、辺CAの延長と交わる点をGとすると、 \triangle AGFは二等辺三角形になる。次の の中は、 \triangle AGFが二等辺三角形になる証明を、途中まで示してある。



次の問1, 問2に答えなさい。

(千葉県 後期 2011年度)

証明
2点C, Dを結ぶ。
線分CDの中点をHとし,点Hと2点E, Fをそれぞれ結ぶ。
△DBCにおいて、2点E, Hはそれぞれ2辺CB, CDの中点なので、中点連結定理により、
EH (a) BD …①
EH= (b) BD …②
△ADCにおいて、同様に、

問1 (a) に入る最も適当な記号と, (b) に入る数をそれぞれ書きなさい。

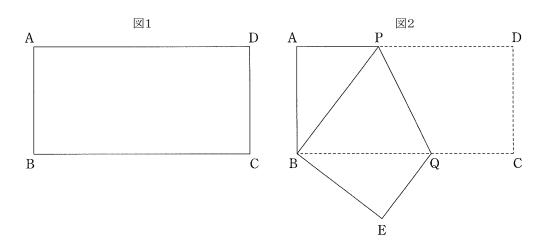
したがって、△AGFは二等辺三角形になる。

問2 (c) に証明の続きを書き、証明を完成させなさい。ただし、 の中の①、②に示されている関係を使う場合、番号の①、②を用いてもかまわないものとする。

問1	(a)	
ii] I	(b)	
問2	(c)	

【問6】

図1のような長方形ABCDがある。図2のように、頂点DがBと重なるように折ったときの折り目の線分をPQ、頂点Cが移った点をEとする。



このとき、次の問いに答えなさい。

(富山県 2011年度)

問1 折り目の線分PQを図1に作図し、P, Qの記号をつけなさい。ただし、作図に用いた線は残しておくこと。

問2 図2で、△BPQは二等辺三角形であることを証明しなさい。ただし、証明の中に根拠となることがらを必ず書くこと。

問3 AP=3 cm, PD=5 cmのとき, 線分PQの長さを求めなさい。

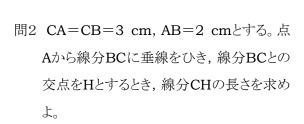
問2	問1	A B	D	
	問2			

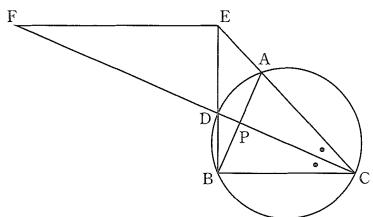
【問7】

図のように、円周上に3点A、B、Cがある。 \angle ACBの二等分線と円周との交点をD、BDを延長した直線とCAを延長した直線との交点をEとおき、点Eを通りBCに平行な直線とCDを延長した直線との交点をFとする。このとき、次の問いに答えよ。

(福井県 2011年度)

問1 線分ABと線分CDの交点をPとするとき、 △DEF∽△APCであることを証明せよ。





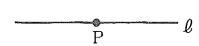
問3 問2のとき、 \triangle DBCと \triangle DEFの面積の比を求めよ。

	〔証明〕	
問1		
問2	cm	
問3	(△DBCの面積):(△DEFの面積)= :	

【問8】

直線 ℓ上にある点Pを通る ℓの垂線をひくために、次のように作図をした。

- I 点Pを中心とする円をかき、直線ℓとの交点をA、Bとする。
- Ⅱ 点A, Bを, それぞれ中心として, 等しい半径の2つの円を交わるよう にかき, その交点の1つをQとする。



この直線PQが直線 ℓと垂直であることを次のように証明した。 ア , イ , ウ をうめて証明を完成しなさい。

(愛知県A 2011年度)

〔証明〕

 $\triangle QAP \angle \triangle QBP \mathcal{C}$,

 $PA=PB \cdots 1$

 $PQ=PQ \cdots 2$

 $AQ = \boxed{7} \cdots \boxed{3}$

①, ②, ③から, 3辺が, それぞれ等しいので,

 $\triangle QAP \equiv \triangle QBP$

よって、 ∠QPA= ∠ イ ···④

④と、 $\angle QPA + \angle \boxed{1} = \boxed{\dot{p}}$ °から、 $\angle QPA = 90^\circ$

つまり、PQ⊥ℓ

解答欄

ア (), イ (), ウ (

【問9】

平行四辺形ABCDで、2点E、Fが対角線BD上にあり、BE=DFである。ただし、線分BEの長さは線分BFの長さより短いものとする。このとき、四角形AECFは平行四辺形であることを次のように証明したい。(I)、(II)、(III) にあてはまる最も適当なものを、下のアから力までの中からそれぞれ選んで、そのかな符号を書きなさい。

(愛知県B 2011年度)

〔証明〕

 $\triangle AED \ge \triangle CFB$ で,

四角形ABCDは平行四辺形だから、AD=CB …①

BE=DFだから、ED=FB …②

AD // BCで, (I) は等しいから, (II) …③

①, ②, ③から, 2辺とその間の角が, それぞれ等しいので,

 $\triangle AED \equiv \triangle CFB$

合同な三角形では、対応する辺の長さと角の大きさは等しいので、

 $AE = CF \cdots (4)$

(III) …⑤

⑤から、(I) が等しいので、AE // CF …⑥

④, ⑥から, 1組の向かいあう辺が, 等しくて平行であるので,

四角形AECFは平行四辺形である。

ア対頂角

イ同位角

ウ錯角

 $\bot \angle DAE = \angle BCF$

オ∠AED=∠CFB

カ∠ADE=∠CBF

解答欄

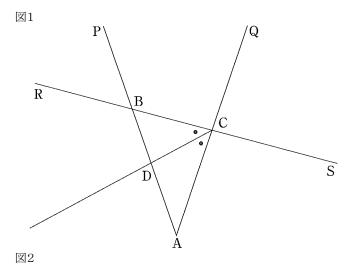
I (), II (), III ()

【問10】

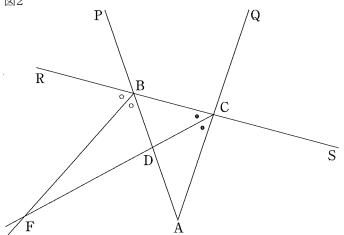
図1のように、直線AP、AQがあり、AP上に点Bがある。Bを通る直線RSをひき、AQとの交点をCとする。また、 \angle ACBの二等分線をひき、APとの交点をDとする。次の問1~問3に答えなさい。

(和歌山県 2011年度)

問1 点Aを通り、直線CDに平行な直線をひき、直線 RSとの交点をEとする。 ∠ACB=86° のとき、 ∠ CAEの大きさを求めなさい。



問2 AC=9 cm, BC=6 cm, AD=6 cmのとき, BDの長さを求めなさい。



問3 図2のように、 ∠ABRの二等分線をひき、直線CDとの交点をFとする。このとき、次の(1)、(2)に答えなさい。

- (1) $\angle BFC = \frac{1}{2} \angle BAC$ であることを、 $\angle ACB = \angle a$ 、 $\angle ABR = \angle b$ として、証明しなさい。
- (2) ∠ABCの二等分線上に点Gをとり、4点B、F、G、Cが同じ円周上にあるようにしたい。Gの位置をどのように決めればよいか、説明しなさい。ただし、作図の手順はかかなくてもよい。

問1	2	∠CAE=	度
問2		BD=	cm
問3	(1)	[証明]	
	(2)	〔説明〕	

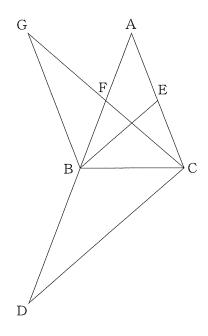
【問11】

図のように、AB=ACの二等辺三角形ABCがある。辺ABの延長上に、AB=BDとなる点Dをとり、点Dと点Cを結ぶ。点Bを通り線分DCに平行な直線と、辺ACとの交点をEとする。また、辺ABの中点をFとし、点Bを通り辺CAに平行な直線と、直線CFとの交点をGとする。このとき、次の問1、問2に答えなさい。

(香川県 2011年度)

問1 $\triangle ABE$ $\triangle ADC$ であることを証明せよ。

問2 GC=DC であることを証明せよ。



	〔証明〕
問1	
	〔証明〕
問2	

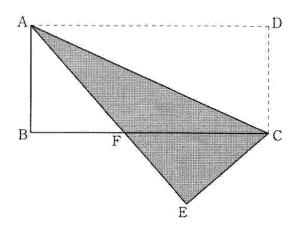
【問12】

図は、AB < BCである長方形ABCDを、対角線ACを折り目として折り返し、頂点Dが移った点をE、辺BCと線分 AEの交点をFとしたものである。このとき、次の問1・問2に答えなさい。

(高知県 前期 2011年度)

問1 三角形AFCは二等辺三角形であることを証明せよ。

問2 AB=4 cm, BC=8 cmのとき, 点Bと点Eを結んでできる 三角形BEFの面積を求めよ。

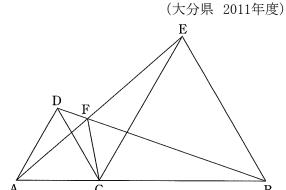


	〔証明〕	
問1		
	したがって、三角形AFCは二等辺	三角形である。
問2	cm ²	

【問13】

図のように、線分AB上にAC=2 cm, CB=4 cmとなる点Cをとり、線分AC, CBをそれぞれ1辺とする正三角形DAC, ECBを、線分ABについて同じ側につくる。また、線分AEとDBの交点をFとする。次の問1~問3に答えなさい。

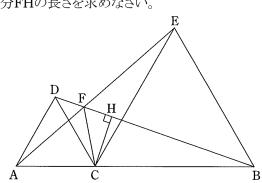
問1 **ZBFC=60**° となることを次のように証明した。 **Z** には、 適する式を、 **d**, **D** には適する記号を書いて、証明を完成 させなさい。



〔証明〕 $\triangle ACE \ge \triangle DCB$ において、 \triangle DACと \triangle ECBは正三角形だから、 AC = DC $\cdots (1)$ $\cdots (2)$ ∠ACE=∠ACD + また, $\angle DCB = \angle ECB +$ ∠ACD=∠ECB=60° だから、 $\angle ACE = \angle DCB \cdots (3)$ ①, ②, ③より, 2辺とその間の角がそれぞれ等しいので, $\triangle ACE \equiv \triangle DCB$ 対応する角がそれぞれ等しいので、 ∠CEA= ∠CBD ここで、2点E、Bが直線FCについて同じ側にあることから、円周角の定理の逆より、 は同一円周上にある。 したがって、円周角の定理より、 $\angle BFC = \angle BEC = 60^{\circ}$

問2 △DCBの面積を求めなさい。

問3 点Cから線分DBに垂線を引きその交点をHとする。このとき、線分FHの長さを求めなさい。



	ア	
問1	イ	∠
	ウ	, , , , , , , , , , , , , , , , , , , ,
問2		cm^2
問3		cm

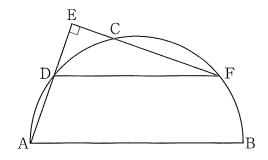
【問14】

図のように、線分ABを直径とする半円があり、 \widehat{AB} 上に点 \widehat{CE} 、 \widehat{AC} の長さが \widehat{CB} の長さより短くなるようにとる。また、 \widehat{AC} 上に点 \widehat{DE} 、 \widehat{AD} = \widehat{DC} となるようにとり、 \widehat{CD} たから直線 \widehat{AD} にひいた垂線と直線 \widehat{AD} との交点を \widehat{E} 、 \widehat{EC} の延長と \widehat{AB} との交点を \widehat{E} とする。このとき、次の各問いに答えなさい。

(熊本県 2011年度)

問1 DF // ABであることを証明しなさい。

問2 AB=6 cm, AD=2 cmのとき, 線分EFの長さを求めなさい。 ただし, 根号がつくときは, 根号のついたままで答えること。



	〔証明〕	
問1		
問2	cm	