5-2. 平面図形 その他の証明 複合問題ほか 2003年度出題

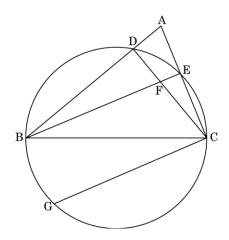
【問1】

図のように、3つの内角がすべて鋭角である \triangle ABCがあります。辺BCを直径とする円と辺AB、ACとの交点をそれぞれD、Eとし、線分CDとBEとの交点をFとします。点Cを通り、線分BEに平行な直線と円との交点をGとします。次の問いに答えなさい。

(北海道 2003年度)

問1. ∠EGC=25° のとき∠CEGの大きさを求めなさい。

問2. DB=DCのとき、BF=CAを証明しなさい。



問1	度
	証明
問2	

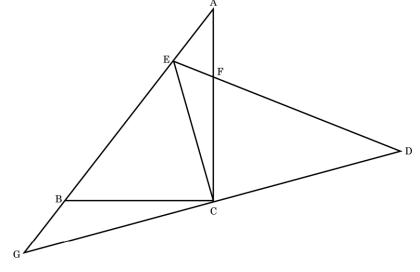
【問2】

図で、 \triangle ABCは \angle ACB=90° の直角三角形である。点Dは線分ACの右側に、点Eは線分AB上にあり、 \triangle ABC $\equiv \triangle$ DECである。線分ACとDEの交点をF、線分ABとDCを延長した直線の交点をGとする。次の[1]、[2]の問いに答えなさい。

(秋田県 2003年度)

(1) EG=EDとなることを証明しなさい。

[2] AB:BC=5:3のとき, AF:FDを求めなさい。

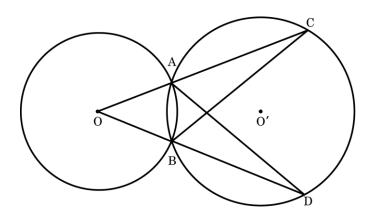


	証明	
(1)		
(2)		
(2)	:	

【問3】

図のように、2つの円O、O' が2点A、Bで交わっている。OA、OBの延長と円O' との交点をそれぞれC、Dとする。 このとき、AD=BCであることを証明しなさい。

(栃木県 2003年度)



証明		

【問4】

ある中学校の数学の授業で、生徒がつくった問題を皆で考えた。次の各問に答えよ。

(東京都 2003年度)

Sさんは、次の問題をつくった。

- [Sさんの問題] —

右の図1で、 $\triangle ABC$ は、AC=BC=10cm、

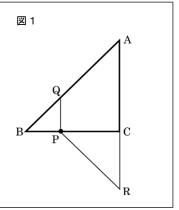
∠ACB=90°の直角二等辺三角形です。

点Pは、 \triangle ABCの辺BC上にある点で、点B、Cのいずれにも一致しません。

 $\triangle QBP$ は、QP=BP、 $\angle QPB=90^\circ$ の直角二等辺三角形です。

 \triangle PRCは、PC=RC、 \angle PCR=90 $^{\circ}$ の直角二等辺三角形です。

 $BA+AC=\ell$ cm,BQ+QP+PR+RC=m cm とするとき, ℓ とmの値を比べましょう。



皆は、[Sさんの問題]について、いろいろな考え方でℓとmの値を比べた。

Tさんは、BP=3 cmとして、 ℓ とmの値をそれぞれ求めて比べた。

問1. [Sさんの問題]で、Tさんが決めたBP=3 cmのとき、 ℓ とmの値をそれぞれ求めよ。ただし、答えに根号がふくまれるときは、根号をつけたままで表せ。

Uさんは、[Sさんの問題]をもとにして、次の問題をつくった。

- [Uさんの問題] —

右の図2で、おうぎ形CABは、半径が10cm、

中心角が∠ACB=90°のおうぎ形です。

点Pは、おうぎ形CABの半径BC上にある点で、

点B, Cのいずれにも一致しません。

おうぎ形PQBは、半径がBP、中心角が

 $\angle QPB=90^{\circ}$ のおうぎ形です。

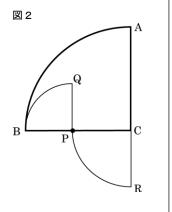
おうぎ形CPRは、半径がPC、中心角が

∠PCR=90°のおうぎ形です。

BA, BQ, PRが, それぞれ弧BA, 弧BQ,

弧PRの長さを表すとき,

 $\widehat{BA}+AC=\widehat{BQ}+QP+\widehat{PR}+RC$ であることを確かめましょう。



問2. [Uさんの問題]で、 $\widehat{BA} + AC = \widehat{BQ} + QP + \widehat{PR} + RC$ であることを証明せよ。ただし、円周率は π とする。

問1	<i>ℓ</i> の値	mの値	
	証明		
問2			
	$\widehat{BA} + AC = \widehat{BQ} + QP + \widehat{PR} + RC$		

【問5】

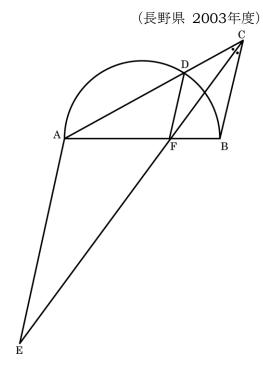
図のように、ABを直径とする半円と、半円外の点Cがある。ACと半円の交点をD、Aを通りBCに平行な直線と \angle ACBの二等分線との交点をE、ECとABの交点をFとする。AD=4 cm、DC=2 cm、BC=3 cmのとき、次の各問いに答えなさい。

[1] AEの長さを求めなさい。

(2) DF //AEを証明しなさい。

(3) AFの長さを求めなさい。

(4) △AECの面積を求めなさい。



(1)	cm	
(2)	証明	
(3)	cm	
(4)	$ m cm^2$	

【問6】

図のように、四角形ABCDと四角形GCEFはともに正方形で、線分BGと線分EDの延長との交点をHとする。このとき、 $BG \bot EH$ であることを、次のように証明した。下の[1]、[2]に答えなさい。

(石川県 2003年度)

証明

△GBCと△EDCにおいて

四角形ABCDと四角形GCEFは正方形だから

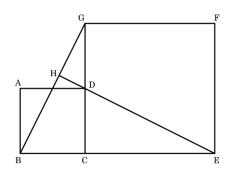
BC = DC

GC = EC

 $\angle BCG = \angle DCE = 90^{\circ}$

よって、アから

 $\triangle GBC \equiv \triangle EDC$



- [1] ア にあてはまる三角形の合同条件を書きなさい。
- |2| イ の部分には証明の続きが入ります。それを書きなさい。

(1)	
(2)	

【問7】

四角形 $ABCD$ で、 $\triangle ABD = \triangle ACD =$	\triangle BCDとなっているとき,	この四角形は平行四辺形	であることを次のように
証明した。空欄に最も適した式を書け。			

(愛知県A 2003年度)

(証明)	△ABD=△ACDだから, AD //BC
	また、 $\triangle ACD = \triangle BCD$ だから、 $\phantom{AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA$
	したがって、2組の向かいあう辺が、それぞれ平行であるので、四角形ABCDは平行四辺形である。
解答欄	

【問8】

 \triangle ABCで、 \angle Aの二等分線が辺BCと交わる点をD、DからCAに平行な直線をひき、ABとの交点をEとする。このとき、AE=DEとなることを次のように証明した。空欄に最も適した式を書け。

(愛知県B 2003年度)

(証明)	仮定より、 ∠BAD=∠CAD …① DE //CAだから、 …②
	①, ②から, △EDAで, ∠EAD=∠EDA したがって, AE=DE

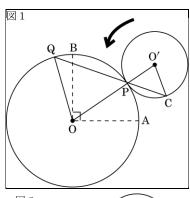
解答欄			

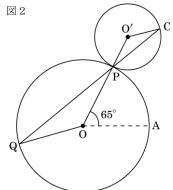
【問9】

図1のように、半径2 cmの円Oの周上に、 \angle AOB=90° となる2点A、Bをとり、半径1 cmの円O′が、 \widehat{AB} 上を、すべることなく反時計回りに回転していく。このとき、2つの円の接点をPとし、点Pは点Aから点Bまで移動するものとする。また、円O′の周上で、回転する前に点Aと重なっていた点をCとし、回転を始めてからできる線分CPの延長と円Oとの交点をQとする。ただし、円O′が回転する前は点Qも点Aに重なっていたものとする。後の $(1)\sim[4]$ の問いに答えなさい。

(滋賀県 2003年度)

- [1] 次の(ア), (イ)の 内にあてはまる記号や数を書きなさい。
 - (ア) ÂPと ① の長さは等しい。
 - (イ) 点Qは円Oの周上を ② °回転する。
- [2] O' C //OQであることを証明しなさい。
- [3] 図2のように、∠AOP=65° のとき、∠OQPの大きさを求めなさい。
- |4| △OQPの面積が最大になるとき、線分CQの長さを求めなさい。





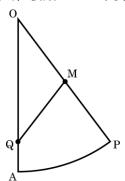
(1)	(ア)	①	
	(イ)	2	
	証明		
(2)			
(3)			
(0)			
(4)		cm	

【問10】

図において、図形OAPは半径が10 cmで中心角 \angle AOPが鋭角のおうぎ形である。Mは線分OPの中点である。Qは、線分OA上にあってMQ=MOとなる点のうちOと異なる点である。円周率を π として、次の問いに答えなさい。

(大阪府 後期 2003年度)

[1] 中心角 ∠AOPの大きさが60°であるときの線分QAの長さを求めなさい。



[2] 下の の【証明】は、次の の中のことがらを中心角 \angle AOPの大きさを a° として証明したものである。 証明中の ⑦ ~ の のそれぞれに入れるのに適している角の大きさをaを用いて表しなさい。

中心角 \angle AOPの大きさが何度であっても、PとQとを結んでできる \triangle OQPの内角 \angle OQPの大きさは90°である。

【証明】

中心角 \angle AOPの大きさをa° とする。

△MOQはMQ=MOの二等辺三角形だから ∠MQO=∠MOQ

 $\angle AOP = a^{\circ}$ だから $\angle MQO = a^{\circ}$ …①

よって ∠QMP= ⑦ °

三角形の内角の和は180° だから **ZMQP+ZMPQ=** ① | °

Mは線分OPの中点であり、また、MQ=MOだから、

△MQPはMQ=MPの二

等辺三角形となり ZMQP=ZMPQ

よって ∠MQP= ⑦ °···②

①, ② \sharp 0 $\angle OQP = \angle MQO + \angle MQP = 90^{\circ}$

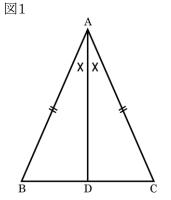
- (3) おうぎ形OAPが解答欄に示した図形であるとき、点Qを定規とコンパスを使って解答欄の図中に作図しなさい。作 図の方法がわかるように、作図に用いた線は残しておくこと。
- [4] 2点P, Q間の距離が6 cmのとき、PとQとを結んでできる△OQPをOAを軸として1回転させてできる円すいの側面積を求めなさい。

(1)			cm	-			
(2)	Ŷ			4		9	
(3)			A		P		
(4)			cm ²	?			

【問11】

(岡山県 2003年度)

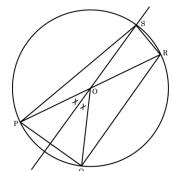
① 図1のように、AB=ACの二等辺三角形ABCがあり、∠BACの二等分線と辺BCとの交点をDとする。このとき、ADは辺BCを垂直に2等分することを証明しなさい。



② 図2のように、半径2 cmの円Oの円周上にある3点P, Q, Rを頂点とする△ PQRがある。ここで、PQ=2 cmであり、PRは円Oの直径である。点Oと点Qを 結び、∠POQの二等分線と円Oとの交点のうち、点Rに近い方の点をSとし、 点Sと点P、点Sと点Rをそれぞれ結ぶ。このとき、

図2

 $QR = \begin{picture}(30,0) \put(0,0){\line(1,0){10}} \put(0,0){\line(1,0){10}}$



また、四角形PQRSの面積は(x) cm 2 である。

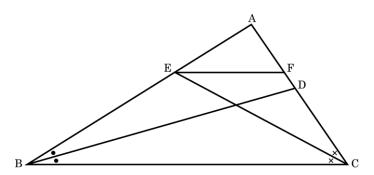
	証明	
①		
2	(ア)	
	(1)	
	(ウ)	
	(工)	

【問12】

図のように、 \triangle ABCにおいて、 \angle B、 \angle Cの二等分線と辺AC、ABの交点をそれぞれD、E、また、点Eを通り、辺BCに平行な直線と辺ACとの交点をFとする。ただし、AB>ACとする。次の $(1)\sim[3]$ の問いに答えなさい。

(大分県 2003年度)

- (1) △FECが二等辺三角形であることを証明しなさい。
- (2) AF=4 cm, BC=15 cmのとき, 線分EFの長さを求めなさい。



[3] AF=5 cm, FD:DC=1:5であり、また、線分EBがFCより6 cm長いとき、線分AEの長さを求めなさい。

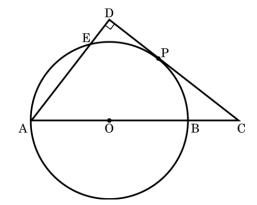
	証明	
(1)		
(2)	cm	
(3)	cm	

【問13】

図は、ABを直径とする円Oの周上に点Pを、 $\angle BOP$ が鋭角になるようにとり、点Pにおける円Oの接線とABの延長との交点をCとし、点Aから直線CPに垂線をひき、直線CPとの交点をD、直線ADと円Oとの交点をEとしたものである。このとき、次の1~3の問いに答えなさい。

(鹿児島県 2003年度)

- 1. 点D以外の6つの点O, A, B, C, E, Pのうち, 3つの点を適当にとり 三角形をつくるとき直角三角形となるものを1つあげよ。
- 2. $\angle OAP = \angle EAP$ であることを証明せよ。
- 3. 円Oの半径を2 cm, BCの長さを1 cmとするとき次の[1], [2]の問いに答えよ。
 - [1] 線分ADの長さは何cmか。



[2] 四角形DEOPの面積は何cm²か。

1			
2	証明		
3	(1)	cm	
	(2)	cm ²	