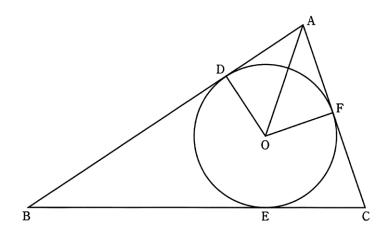
3-4. 平面図形 合同の証明 複合問題ほか 2007年度出題

【問1】

図のように、円Oと△ABCがあり、円Oは3辺AB、BC、CAとそれぞれ3点D、E、Fで接しています。このとき、次の1、2の問いに答えなさい。

(岩手県 2007年度)



問1. $\triangle OAD \equiv \triangle OAF$ を証明し、AD = AFとなることを示しなさい。

問2. AB=13 cm, AC=9 cm, AD=4 cmのとき, 辺BCの長さを求めなさい。

	証明	
問1		
	したがって AD=AF	
問2	cm	

【問2】

図のように、点Aを中心とする円Aと、点Bを中心とする円Bは、互いに他方の円の中心を通ります。この2つの円の交点をC、Dとします。円Bの周上に、点C、Aのいずれにも一致しない点Pをとり、 $\triangle A$ CPをつくります。また、円Aの周上に、PC=PQとなる点Qを、点Cと一致しないようにとり、 $\triangle A$ QPをつくります。あとの(1)~(4)の問いに答えなさい。

(宮城県 2007年度)

- (1) $\triangle ACP \equiv \triangle AQP$ であることを証明しなさい。
- (2) 3点A, B, Cを結んでできる三角形はどんな三角形ですか。 その名称を書きなさい。



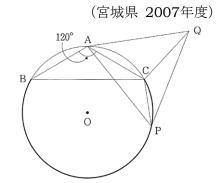
- (3) ∠CAP=40° のとき、∠AQPの大きさを求めなさい。
- (4) AC=6 cmとし、3点C、P、Qを結んでできる \triangle CPQの面積が最大となるように点Pをとるとき、 \triangle CPQの面積を求めなさい。

(1)	証明	
(2)		
(3)	度	
(4)	cm^2	

【問3】

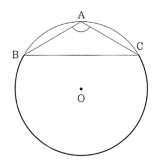
図 I のように、円Oの周上に3点A、B、Cを、AB=AC、 \angle BAC=120° となるようにとり、 \triangle ABCをつくります。点Pを太い線で表した \widehat{BC} 上にとります。また、点Qを直線APについて点Bと反対側に、AP=QA=QPとなるようにとり、 \triangle APQをつくります。さらに、点Cと点P、点Cと点Qをそれぞれ結びます。ただし、点Pは点B、Cのいずれにも一致しないものとします。あとの(1)、(2)の問いに答えなさい。

- (1) $\triangle APC \equiv \triangle QPC$ であることを証明しなさい。
- (2) 円Oの半径を6 cmとし、点Oと点Qを結ぶとき、次の①、②の問い に答えなさい。図Ⅱを利用して考えてもかまいません。
 - ① 点Oと点Cを結びます。 ∠OCQ=120° となるとき, 線分OQ の長さを求めなさい。
 - ② 線分OQの長さが最大となるとき、2つの線分CQ、PQと \widehat{CP} で囲まれる部分の面積を求めなさい。ただし、 \widehat{CP} は小さい方の弧とし、円周率を π とします。



図Ⅱ

図 I



	証明		
(1)			
(2)	1	cm	
(2)	2	cm^2	

【問4】

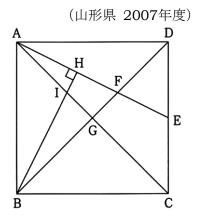
図において、四角形ABCDは、1辺が4 cmの正方形である。辺CDの中点をEとし、線分BDと線分AE、ACとの交点をそれぞれF、Gとする。また、点Bから線分AEにひいた垂線と線分AE、ACとの交点をそれぞれH、Iとする。このとき、あとの問いに答えなさい。

問1. AEの長さを求めなさい。

問2. BHの長さを求めなさい。

問3. △ABIと△DAFが合同であることを証明しなさい。

問4. △AGFの面積を求めなさい。

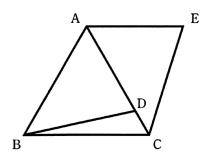


問1	cm
問2	cm
問3	証明
問4	cm^2

【問5】

図のように、正三角形ABCにおいて辺AC上に点Dをとり、AE $/\!\!/$ BC、AD=AEとなるように点Eをとる。このとき、 \triangle ABD= \triangle ACEであることを証明しなさい。

(栃木県 2007年度)



訂	正明			

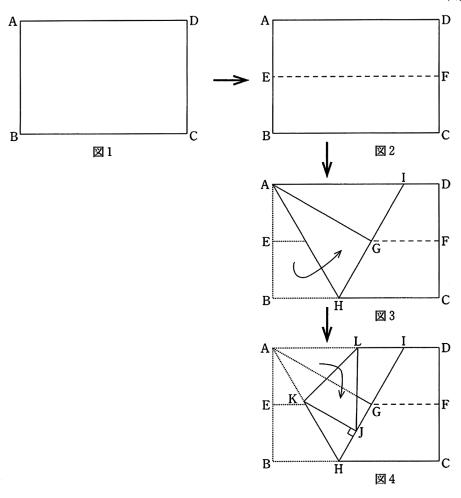
【問6】

図1の長方形ABCDの紙を、次の①、②のように折ります。

- ① 辺BCを辺ADに重なるように折り、図2のようにもとに戻したときの折り目の線をEFとします。
- ② 図3のように、頂点Aを通る線分を折り目として、頂点Bが線分EF上にくるように折ったとき、頂点Bの移った点をG、折り目をAHとします。また、線分HGを延長した直線をかき、辺ADとの交点をIとします。

このとき、次の各問に答えなさい。なお、考えるときに、用紙を切り取って利用してもさしつかえありません。

(埼玉県 2007年度)



問1. 図3において、 \triangle AGHと \triangle AGIが合同であることを証明しなさい。

問2. 図4のように、図3の△AHIの頂点Aが辺HI上にくるように折り、その交点をJとし、辺AH上の折り目の点をK、辺AI上の折り目の点をLとします。ここで、KJ⊥HI、KH=4 cmのとき、線分JLの長さを求めなさい。ただし、根号はつけたままで答えなさい。

	証明	
BB 4		
問1		
問2	cm	
1-12		

【問7】

図1で、点Oは線分ABを直径とする半円の中心である。点Pは \widehat{AB} 上にある点で、点A、点Bのいずれにも一致しない。点Bと点Pを結び、線分BPの中点をQとする。点Aと点Qを結び、線分AQをQの方向に延ばした直線と \widehat{BP} との交点をRとする。点Pと点Rを結ぶ。次の各間に答えよ。

(東京都 2007年度)

問1. 図1において、 $\widehat{AP}:\widehat{AB}=1:3$ のとき、 $\angle ARP$ の大きさは何度か。

- 問2. 右の図2は、図1において、点Pから線分AQにひいた垂線と、線分AQとの交点をSとし、点Aと点P、点Bと点Rをそれぞれ結んだ場合を表している。次の(1)、(2)に答えよ。
 - (1) $\triangle PSQ \equiv \triangle BRQ$ であることを証明せよ。
 - (2) OA=2 cm, ∠PAB=∠PBAのとき, 四角形PABRの面積は何 cm²か。

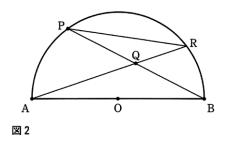
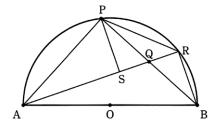


図 1



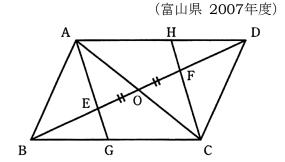
問1		度		
問2	(1)	証明 △PSQと△BRQにおい △PSQ≡△BRQ	T,	
	(2)		cm ²	

【問8】

図のように、平行四辺形ABCDがあり、対角線の交点をOとする。OE=OFとなるように、2点E、Fをそれぞれ線分BO、OD上にとり、AEの延長と辺BCとの交点をG、CFの延長と辺ADとの交点をHとする。このとき、次の問いに答えなさい。

問1. △AOE≡△COFを証明しなさい。ただし、証明の中に根拠 となることがらを必ず書くこと。

問2. BE:EO=3:2のとき, BG:GCを求めなさい。



問3. OF=FD, \triangle CDFの面積が12 cm²のとき, 四角形AOFHの面積を求めなさい。

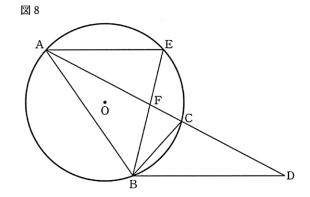
	証明	
	△ AOEと△COFにおいて	
問1		
1.42		
	DG GG	
問2	BG:GC= :	
問3	cm^2	

【問9】

図8において、3点A、B、Cは円Oの円周上の点であり、AB=ACである。ACの延長上にBA=BDとなる点Dをとる。 \widehat{AC} 上に $\angle BAC=\angle CAE$ となる点Eをとる。ACとBEとの交点をFとする。このとき、次の1、2の問いに答えなさい。

問1. △ABF≡△DBCであることを証明しなさい。

問2. 円Oの半径が5 cmで、 $\angle AFB=102$ ° のとき、 \widehat{BC} に 対する中心角の大きさを求めなさい。また、 \widehat{BC} の長さを 求めなさい。ただし、円周率は π とする。



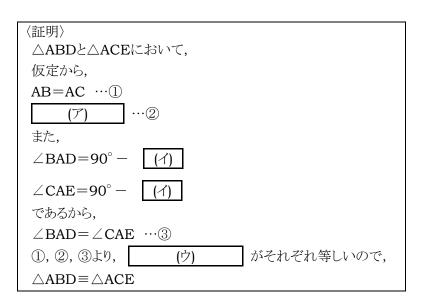
(静岡県 2007年度)

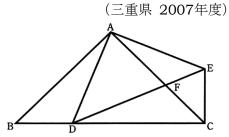
問1	証明
問2	中心角 <u> </u>

【問10】

図のように、AB=ACの直角二等辺三角形ABCの辺BC上に点Dをとり、AD=AEとなる直角二等辺三角形ADEをつくる。また、線分ACと線分DEの交点をFとする。このとき、次の各問いに答えなさい。

問1. $\triangle ABD \equiv \triangle ACE$ であることの証明を次の (\mathcal{T}) \sim $(\dot{\mathcal{T}})$ に 適切なことがらを書き入れて完成しなさい。





間2. $\triangle ABD \hookrightarrow \triangle DCF$ であることを証明しなさい。

問3. 点Aから線分BCに垂線AMをひく。AB=DC=6cmのとき、次の各問いに答えなさい。

- (1) AMの長さを求めなさい。なお、答えに $\sqrt{}$ がふくまれるときは、 $a\sqrt{b}$ の形に変形し、 $\sqrt{}$ の中をできるだけ簡単な数にしなさい。
- (2) \triangle ADFの面積を求めなさい。なお、答えに $\sqrt{}$ がふくまれるときは、 $\sqrt{}$ の中をできるだけ簡単な数にしなさい。

	(ア)		
問1	(イ)		
	(ウ)		
問2	証明		
問3	(1)	cm	
削る	(2)	cm ²	

【問11】

図 I ~図IIIにおいて, 四角形ABCDは長方形であり, 四角形EFCGは長方形ABCDをCを中心として回転させて できる長方形である。このとき、長方形ABCD = 長方形EFCGである。辺CDと辺EFは、D、Fと異なる点で交わって いる。Hは、辺CDと辺EFとの交点である。AB=6 cm、AD=3 cmであるとし、鋭角 \angle BCFの大きさが α ° であるとし て, 次の問いに答えなさい。答えが根号をふくむ形になる場合は, その形のままでよい。また, 円周率は πとする。

問1. 図 I において、 \widehat{BF} は、Cを中心とし線分CBを半径とする円の弧である。 \widehat{AE} は、Cを中心としCとAとを結んでできる線分CAを半径とする円の弧である。 図 I 中の で示した部分は、辺AB、BC、CG、GEとAEによって囲まれ

てできる図形である。

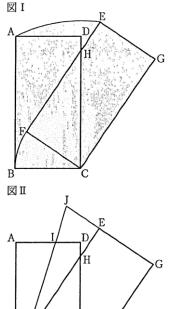
(1) BFの長さは何cmですか。aを用いて表しなさい。

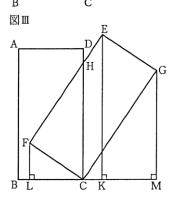
(2) で示した部分の面積は何 cm^2 ですか。aを用いて表しなさい。

問2. 図Ⅱにおいて、直線BFと辺ADは、Dと異なる点で交わっている。Iは直線 BFと辺ADとの交点であり、Jは直線BFと直線EGとの交点である。このと き, $\triangle ABI \equiv \triangle EFJ$ であることを証明しなさい。

- 問3. 図Ⅲにおいて, K, L, Mは, それぞれ, E, F, Gから直線BCにひいた垂線 と直線BCとの交点である。GM=5 cmのとき、
 - (1) 線分FLの長さを求めなさい。求め方も書くこと。必要に応じて解答欄 の図を用いてもよい。

(大阪府 後期 2007年度)





(2) 線分EKの長さを求めなさい。

88 1	(1)	cm	
問1	(2)	cm^2	_
問2	証明		
問3	(1)	求め方	
	(2)	cm	

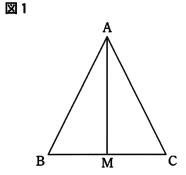
【問12】

図1のように、AB=ACの二等辺三角形ABCの辺BCの中点をMとする。次の(1)、(2)に答えなさい。

(島根県 2007年度)

- (1) \triangle ABM \equiv \triangle ACMであることを証明しなさい。 ただし, AM \perp BCを用いないこと。

 $\triangle ABM \equiv \triangle ACM$ より、 $\angle AMB = \angle$ ア また、 $\angle AMB + \angle$ ア = \boxed{A} ° だから、 $\angle AMB = 90$ ° つまり、 $AM \perp BC$ である。

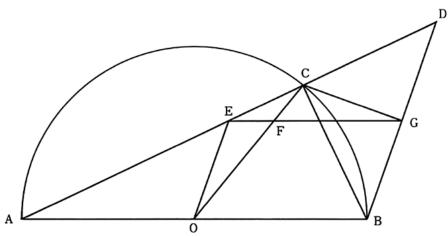


(1)	証明				
(2)	ア	_	イ	0	

【問13】

図のような、線分ABを直径とする半円があり、点Oは線分ABの中点である。この半円の弧AB上に、2点A、Bと異なる点Cをとり、点Aと点C、点Bと点C、点Oと点Cをそれぞれ結ぶ。線分ACをCの方向にのばした直線上に点Cと異なる点Dを、線分CDの長さが、線分ACの長さより短くなるようにとる。ただし、点Dは線分AC上にない点である。点Dと点Bを結ぶ。線分ADの中点をEとして、点Eを通り、線分ABに平行な直線をひき、線分OCと交わる点をF、線分BDと交わる点をGとする。点Oと点E、点Cと点Gをそれぞれ結ぶ。このとき、次の問1では指示に従って答え、問2では に適当な数を書き入れなさい。

(岡山県 2007年度)



問1. \triangle CEO \equiv \triangle ECGを証明しなさい。

問2. AC=8 cm, CD=4 cm, \angle CDB=45° であるとき, BD= $\boxed{\it T}$ cm, 半円の面積は $\boxed{\it I}$ cm², CF= $\boxed{\it D}$ cmである。また, \triangle CEFの面積は $\boxed{\it L}$ cm²である。

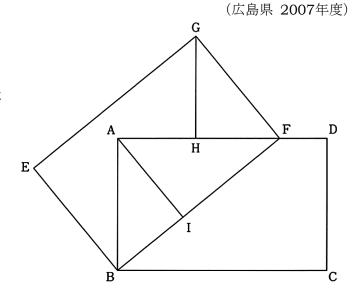
	証明		
問1			
問2	(ア)	cm	
	(イ)	cm^2	
] HJ 2	(ウ)	cm	
	(工)	cm^2	

【問14】

図のように、1つの平面上に合同な2つの長方形ABCD、EBFGがあり、点Fは辺AD上の点です。また、線AF上に点AH、辺AF上に点AH、辺AF上に点AH、AH、AH に点AH、AH に点AH、AH に点AH、AH に点AH、AH に点AH にんAH にんA

問1. △ABI≡△GFHであることを証明しなさい。

問2. AB=4 cm, BC=6 cmのとき, 線分AIの長さは 何cmですか。



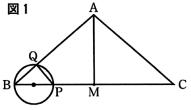
問1	[仮定]図において,四角形ABCD [結論]△ABI≡△GFH [証明]	と四角形EBFGは合同な長方形,GH丄AF,AI丄BF
問2	cm	

【問15】

図1のように、AB=AC=4 cm、BC=6 cmの二等辺三角形ABCがあり、 $\angle BAC$ の二等分線と辺BCとの交点をMとする。また、線分BM上に点Bと異なる点Pをとり、線分BPを直径とする円と辺ABとの点B以外の交点をQとする。このとき、次の問いに答えなさい。

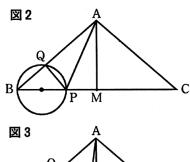
問1. 図2のように、PQ=PMとなるとき、 \triangle PAQ= \triangle PAMであることを証明せよ。

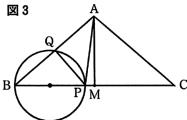
(愛媛県 2007年度)



問2. 図3のように点Qが辺ABの中点となるとき、

- (1) 線分APの長さを求めよ。
- (2) 2点Q, Cを結んでできる△QPCの面積を求めよ。





問1	証明	
BBO	(1)	
問2	(2)	

【問16】

図は、 $\angle A$ が鈍角である $\triangle ABC$ と3つの頂点A、B、Cを通る円において、円周上にAB//CDとなるように点Dをとり、点Aを含まない \widehat{CD} 上にAE=DEとなるように点Eをとったものである。また、線分BEと線分CDの交点をFとし、点Cと点Eを結んだものである。このとき、次の1~3の問いに答えなさい。

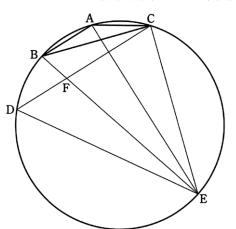
(鹿児島県 2007年度)

問1. ∠ABCと大きさの等しい角を1つあげよ。

問2. △AEC≡△DEFであることを証明せよ。

問3. △ABCが∠BAC=150°の二等辺三角形のとき, 次の(1), (2)の 問いに答えよ。

(1) ∠ECFの大きさは何度か。



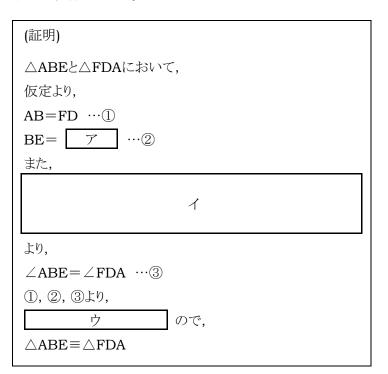
問1			
問2	証明		
問3	(1)	度	
	(2)	倍	

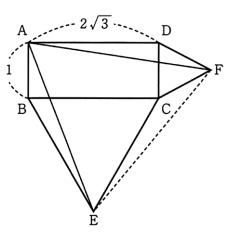
【問17】

図のように、AB=1、 $AD=2\sqrt{3}$ の長方形ABCDがあり、この長方形の外側に2つの正三角形 $\triangle BEC$ と $\triangle DCF$ をつくる。このとき、次の各問いに答えなさい。

(沖縄県 2007年度)

問1. △ABE≡△FDAであることを次のように証明した。 をうめて 証明を完成しなさい。





問2. AEの長さを求めなさい。

問3. △AEFの面積を求めなさい。

問1	ア		
	イ		
	ウ		
問2	Al	$\Xi =$	
問3			