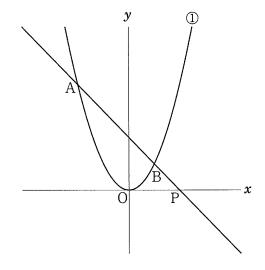
4. 二次関数と図形(面積・長さ)関連の複合問題 【2009年度出題】

【問1】

図のように、関数 $y=ax^2$ (a は正の定数)…① のグラフ上に、2 点 A, B があります。点 A の x 座標を-2、点 B の x 座標を1 とし、点 A, B を通る直線と x 軸との交点を P とします。点 O は原点とします。次の問いに答えなさい。 (北海道 2009 年度)

問1. 点 $A \cap y$ 座標が $5 \cap b$ き, $a \cap d$ を求めなさい。

問2. a=3 とします。①について、x の値が-2 から-1 まで増加するときの変化の割合を求めなさい。



問3. α =1 とします。 ①上の点で、x座標が点 Pの x座標に等しい点を Q とします。 線分 QP 上に点 R をとり、点 R の y座標を t とします。 直線 AR が四角形 AOPQ の面積を 2 等分するとき、t の値を求めなさい。

問1	a=
問2	
問3	t=

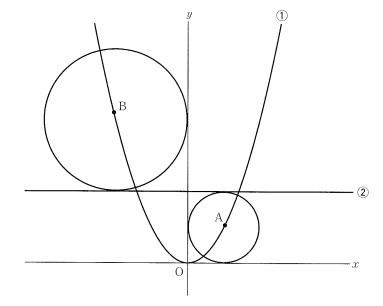
【問2】

図で、①は関数 $y=ax^2$ のグラフであり、点 (4,8) を通っている。また、②は x 軸に平行な直線である。2 つの円の中心 A、B は①上にあり、H A は x 軸、y 軸、②に接し、H B は y 軸と②に接している。次の問1~問3に答えなさい。ただし、座標軸の単位の長さを 1 cm とする。

(青森県 2009 年度)

問1. aの値を求めなさい。

問2. 点 A の座標を求めなさい。



問3. 線分 AB の長さを求めなさい。

問1	a=	
問2		
問3	(em

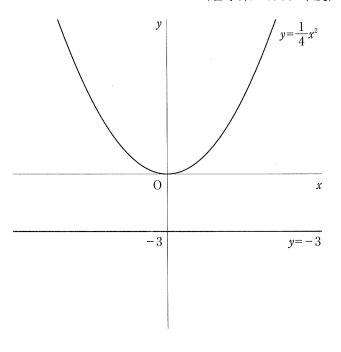
【問3】

図のように、関数 $y=\frac{1}{4}x^2$ のグラフと直線 y=-3 があります。このとき、次の問1、問2に答えなさい。

(岩手県 2009年度)

問1. 関数 $y = \frac{1}{4}x^2$ について、x の変域が $-1 \le x \le 4$ のときの y の変域を求めなさい。

問2. 関数 $y = \frac{1}{4} x^2$ のグラフと直線 y = -3 上にそれ ぞれ 2 点ずつ,あわせて 4 点をとります。この 4 点を結んで正方形ができるとき,その正方形の 1 辺の 長さを,すべて求めなさい。

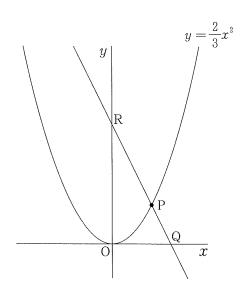


問1	
問2	

【問4】

図のように、関数 $y=\frac{2}{3}x^2$ のグラフ上にx座標が正である点 Pをとります。点 Pを通り、傾きが-2の直線とx軸、y軸との交点をそれぞれ Q、R とし、点 R の y 座標を b とします。PQ:PR=1:2 となるとき、b の値を求めなさい。

(宮城県 2009 年度)

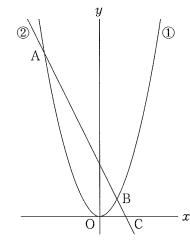


【問5】

図において、①は関数 $y=\frac{1}{2}x^2$ のグラフ、②は①のグラフ上の2点A、Bを通る直線であり、点Aのx座標は-6、点 Bのx座標は 2 である。また、直線②とx軸との交点を C とする。このとき、次の問いに答えなさい。

(山形県 2009 年度)

(1) 関数 $y=\frac{1}{2}x^2$ について、x の変域が $-6 \le x \le 2$ のときの y の変域を求めなさい。



(2) 直線②の式を求めなさい。

(3) ①のグラフ上に, x座標が正である点 D をとる。 \triangle OCD の面積が 12 であるとき, 点 D の x座標を求めなさい。

(1)	
(2)	
(3)	

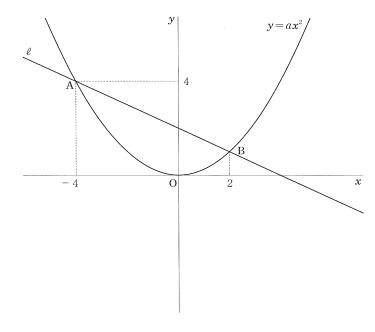
【問6】

図のように、関数 $y=ax^2$ のグラフと直線 ℓ があり、2 点 A、B で交わっている。A の座標は (-4,4) で、B の x 座標は 2 である。このとき、次の問1~問3に答えなさい。

(福島県 2009 年度)

問1. aの値を求めなさい。

問2. 直線ℓの式を求めなさい。



問3. ℓ が x 軸, y 軸と交わる点をそれぞれ C, D とする。また,y 軸上で,D より下側に点 Pをとり,その y 座標を t とする。 \triangle APB の面積と \triangle OPC の面積の比が 5:2 となる t の値をすべて求めなさい。

問1	
問2	
問3	

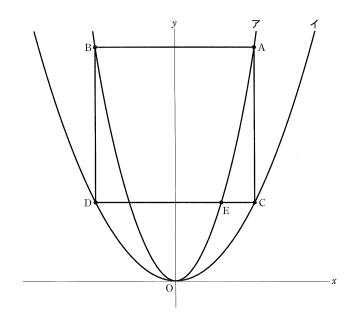
【問7】

図において、曲線アは関数 $y=x^2$ のグラフであり、曲線イは関数 $y=ax^2$ のグラフである。曲線ア上の点で y 座標が 9 である点のうち、x 座標が正である点を A、負である点を B とする。さらに、曲線イ上の点で、x 座標が点 A、B と同じ点をそれぞれ C、D とし、直線 CD と曲線アの交点のうち、x 座標が正である点を E とする。このとき、次の問1、間2に答えなさい。ただし、0 < a < 1 で、O は原点とする。

(茨城県 2009 年度)

問1. $a=\frac{4}{9}$ のとき, 点 E の座標を求めなさい。

問2. DE:EC=3:1 のとき、aの値を求めなさい。



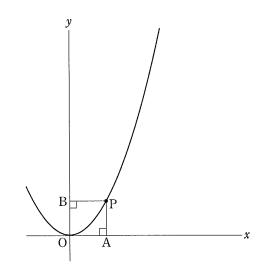
問1	(,)
問2	a=		

【問8】

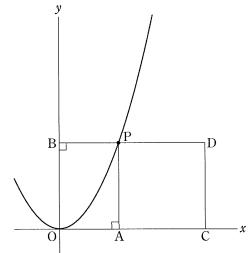
図で、曲線は関数 $y=\frac{1}{2}x^2$ のグラフです。この曲線上に x座標が正である点 Pをとります。点 Pから x 軸、y 軸に 垂線をひき、それぞれの交点を A、B とします。このとき、次の各間に答えなさい。

(埼玉県 2009 年度)

問1. 四角形 PBOA が正方形となるとき, 点 P の座標を求めなさい。



問2. 図のように、長方形 PBOA の右側に、線分 PA を 1 辺とする 正方形 PACD をつくり、この正方形 PACD の面積が、長方形 PBOA の面積の 2 倍となるようにします。このとき、点 B を通り、正方形 PACD の面積を 2 等分する直線の式を求めなさい。

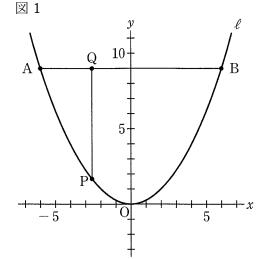


問1	(,)
問2	y=		

【問9】

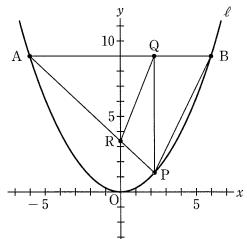
図 1 で, 点 O は原点, 曲線 ℓ は関数 $y=\frac{1}{4}x^2$ のグラフを表している。点 A, 点 B はともに曲線 ℓ 上にあり, 座標はそれぞれ (-6,9), (6,9) である。点 A と点 B を結ぶ。曲線 ℓ 上にあり, x座標が-6より大きく6より小さい数である点を P とする。点 P を通り y 軸に平行な直線を引き、線分 AB との交点を Q とする。座標軸の 1 目盛りを 1 cm として、次の各間に答えよ。

(東京都 2009 年度)



問2. 図 2 は, 図 1 において, 点 Pの x 座標が正の数のとき, 点 A と 点 P を結び, 線分 AP と y 軸との交点を R とし, 点 Q と点 R, 点 B と点 P をそれぞれ結んだ場合を表している。次の(1), (2)に答え よ。

(1) 点 R の座標が (0, 1) のとき, 2 点 A, P を通る直線の式を 求めよ。



(2) PQ=AQ となるとき, △RPQ の面積は, △PBA の面積の何 分のいくつか。

問1	$\leq b \leq$		
問2	(1)	y=	
	(2)		

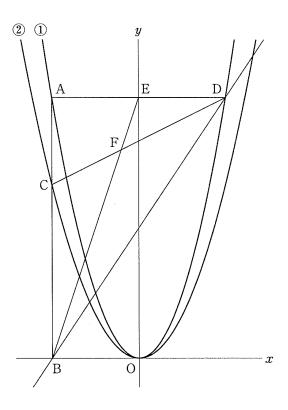
【問 10】

図において、曲線①は関数 $y=x^2$ のグラフであり、曲線②は関数 $y=ax^2$ のグラフである。点 A は曲線①上の点で、その x座標は-3 である。点 B は x 軸上の点で、線分 AB は y 軸に平行である。点 C は線分 AB と曲線②との交点で、AC:CB=1:2 である。また、点 D は曲線①上の点で、線分 AD は x 軸に平行である。原点を O とするとき、次の問いに答えなさい。

(神奈川県 2009 年度)

問1. 曲線②の式 $y=ax^2$ の aの値を求めなさい。

問2. 直線 BD の式を y=mx+n とするとき, m, n の値を求めな さい。



問3. 点 E は線分 AD と y 軸との交点である。線分 BE と線分 CD との交点を F とするとき、線分 CF と線分 FD の長さの比を 最も簡単な整数の比で表しなさい。

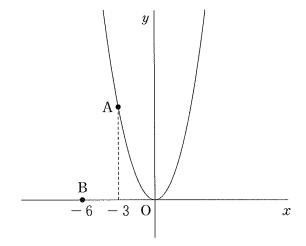
問1	a=
問2	m= , n=
問3	CF:FD =

【問 11】

図は、関数 $y=x^2$ のグラフである。このグラフ上に点 A があり、x 座標は-3 である。また、x 軸上に点 B (-6, 0) がある。このとき、次の問いに答えなさい。

(富山県 2009 年度)

(1) x 座標が 4 である点 C を $y=x^2$ のグラフ上にとる。このとき, $\triangle OAB$ と $\triangle OCB$ の面積の比を求めなさい。



(2) \triangle OPB の面積が、 \triangle OAB の面積の 2 倍になるような点 P を $y=x^2$ のグラフ上にとる。このとき、P の x 座標を すべて求めなさい。

(1)	:
(2)	

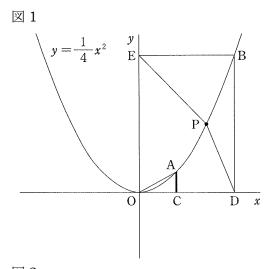
【問 12】

図 1 のように、関数 $y=\frac{1}{4}x^2$ のグラフ上に 2 点 A (2, 1), B (6, 9) がある。点 A, B から x 軸に垂線をひき、x 軸 との交点をそれぞれ C, D とし、点 B から y 軸に垂線をひき、y 軸との交点を E とする。また、点 P はグラフ上を A から B まで動くものとする。このとき、次の間1~間3に答えなさい。ただし、円周率は π とする。

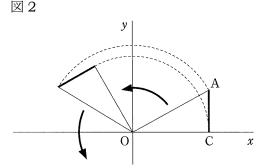
(石川県 2009 年度)

問1.2点A,Bを通る直線の式を求めなさい。

問2. 図 1 の△AOC を, 図 2 のように, 原点 O を中心として矢印の 方向に 1 回転させるとき, 線分 AC が通る部分の面積を求めな さい。なお, 途中の計算も書くこと。



間3. 点 Pの x座標を tとする。 $\triangle PBE$ の面積と $\triangle PDB$ の面積の比が 3:2 のとき,t の値を求めなさい。 なお,途中の計算も書くこと。



問1		
問2	途中の計算	
	答 途中の計算	
	Z 1 2 8131	
HH 0		
問3		
	答	

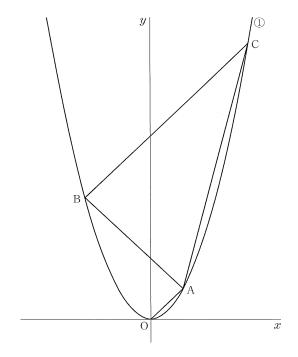
【問 13】

図において、①は関数 $y=x^2$ のグラフであり、点 A, B, C は①上の点で、x 座標はそれぞれ 1, -2, 3 である。このとき、次の問1~問4に答えなさい。

(山梨県 2009 年度)

問1. 線分 OA の傾きを求めなさい。

問2. 関数 $y=x^2$ について, x が-2 から 3 まで増加するときの変化の割合を求めなさい。



問3. 直線 BC の式を求めなさい。

問4. △ABC の面積を求めなさい。

問1	
問2	
問3	
問4	

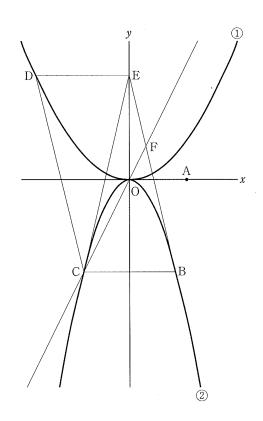
【問 14】

図において、①は関数 $y=ax^2$ (a>0) のグラフであり、②は関数 $y=-\frac{1}{2}x^2$ のグラフである。点 A の座標は (5,0) である。また、点 B は放物線②上の点であり、その x座標は 4 である。このとき、次の問1~問3に答えなさい。 (静岡県 2009 年度)

問1. 点 A を通り、傾きが3である直線の式を求めなさい。

問2. x の変域が $-2 \le x \le 5$ であるとき、関数 $y=ax^2$ の y の変域 を、a を用いて表しなさい。

問3. 点 B から y 軸にひいた垂線の延長と放物線②との交点を C とする。放物線①上に点 D を, y 軸上に点 E を, 四角形 DCBE が平行四辺形となるようにとる。直線 CO と直線 EB との交点を F とする。 $\triangle EOC$ の面積が $\triangle EOF$ の面積の 2 倍となるときの, a の値を求めなさい。求める過程も書きなさい。



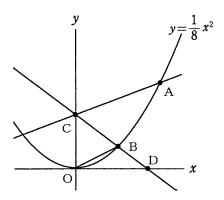
問1		
問2		
問3	求める過程	答 a=

【問 15】

図で、O は原点、A、B は関数 $y=\frac{1}{8}x^2$ のグラフ上の点、C は y 軸上の点、D は直線 BC と x 軸との交点である。 点 A o x 座標が B、点 B o y 座標が B0、B0 o0 面積が B0 o0 の面積の B2 倍であるとき、次の(1)、(2)の問いに 答えよ。ただし、点 B0 o0 o2 座標は正とする。

(愛知県A 2009年度)

(1) 直線 AC の式を求めよ。



(2) 点 D の座標を求めよ。

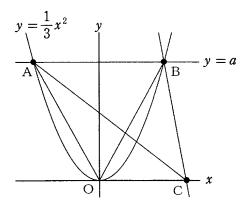
(1)	y=			
(2)	(,)	

【問 16】

図で、O は原点、A、B は関数 $y=\frac{1}{3}x^2$ のグラフと直線 y=a (a は定数、a>0) との交点、C は x 軸上の点である。点 C の x 座標が 8 であるとき、次の(1)、(2)の問いに答えよ。ただし、点 A の x 座標は負、点 B の x 座標は正とする。

(愛知県B 2009年度)

(1) a=12 のとき、直線 BC の式を求めよ。



(2) \triangle BAC の面積と \triangle BOC の面積が等しくなるときの aの値を求めよ。

(1)	y=
(2)	a=

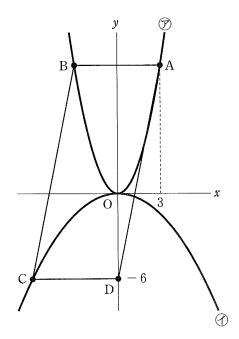
【問 17】

図のように、関数 $y=x^2$ …⑦のグラフ上に 2 点 A, B があり、線分 AB は x 軸に平行である。関数 $y=ax^2$ …①のグラフ上に点 C, y 軸上に点 D を四角形 ABCD が平行四辺形となるようにとる。点 A の x 座標が 3, 点 D の y 座標が -6 のとき、次の各問いに答えなさい。

(三重県 2009 年度)

(1) 点 B の座標を求めなさい。

(2) 2 点 B, D を通る直線の式を求めなさい。



(3) 関数①について、 aの値を求めなさい。

(1)	В (,)
(2)	y=		
(3)	a=		

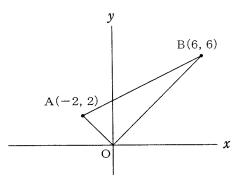
【問 18】

図1のように,座標平面上に2点A(-2,2),B(6,6)をとり, △OABをつくる。次の(1),(2)に答えなさい。

(滋賀県 2009 年度)

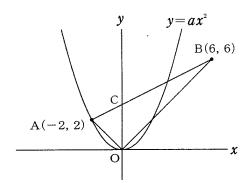
(1) さいころを 2 回投げ、1 回目に出た目の数を x、2 回目に出た目の数を y として点 P (x, y) をとる。このとき、点 P が \triangle OAB の周上にある確率を求めなさい。ただし、さいころの 1 から 6 のどの目が出ることも同様に確からしいとする。

図1



(2) 図2のように、直線 $AB \ge y$ 軸との交点を $C \ge L$ 、点 A を通る $y=ax^2$ のグラフをかく。このグラフ上に $\triangle OAB = \triangle OCQ$ となる点 Q をとるとき、点 Q の座標をすべて求めなさい。

図2



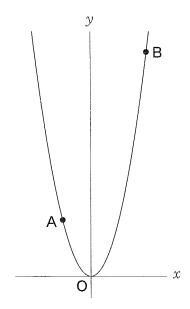
(1)	
(2)	

【問 19】

図のように、関数 $y=\frac{1}{2}x^2$ のグラフ上に 2 点 A, B がある。点 A, B の x 座標はそれぞれ -4, 8 である。このとき、次の問1, 問2に答えよ。

(京都府 2009 年度)

問1. 関数 $y=\frac{1}{2}x^2$ について, x の変域が $-4 \le x \le 8$ のとき, y の変域を求めよ。



問2. 点 A を通り、 △OAB の面積を 2 等分する直線の式を求めよ。

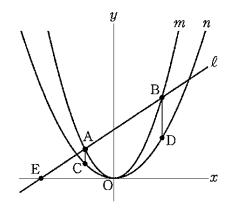
問1		$\leq y \leq$
問2	y=	

【問 20】

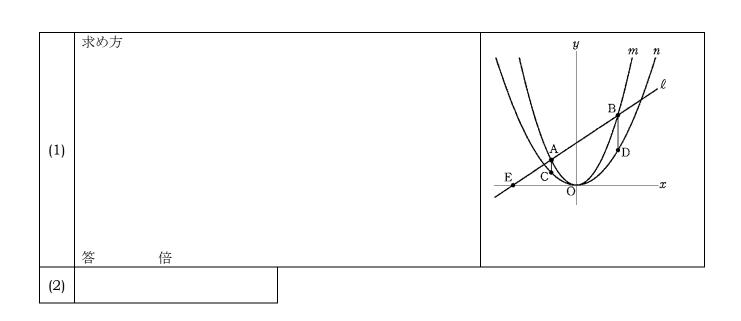
図において、mは $y=ax^2$ (aは正の定数) のグラフを表し、nは $y=bx^2$ (bは正の定数) のグラフを表す。a>b である。A, B は m上の点であり、その x 座標はそれぞれ-3, 5 である。C, D は n上の点であり、C の x 座標は A の x 座標と等しく、D の x 座標は B の x 座標と等しい。A と C, B と D とをそれぞれ結ぶ。 ℓ は 2 点 A, B を通る直線である。E は ℓ と x 軸との交点である。

(大阪府 後期 2009 年度)

(1) 線分 BD の長さは線分 AC の長さの何倍ですか。求め方も書くこと。必要に応じて解答欄の図を用いてもよい。



(2) E の x 座標を求めなさい。

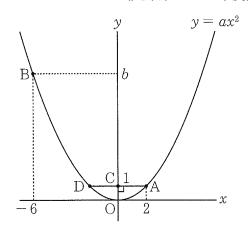


【問 21】

図のように、関数 $y=ax^2$ のグラフ上に 2 点 A (2, 1), B (-6, b) があり、点 A から y 軸に垂線 AC をひく。また、 AC の延長とこのグラフとの交点を D とする。次の問いに答えなさい。ただし、座標軸の単位の長さは 1 cm とする。 (兵庫県 2009 年度)

問1. a, bの値を求めなさい。

問2. △ABC の面積を求めなさい。



問3. この関数のグラフ上で、点 A と点 B の間に点 P をとり、 $\triangle ABC$ の面積と $\triangle APD$ の面積が等しくなるようにする。 このとき、点 P の x 座標を求めなさい。

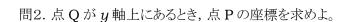
問1	a=
F] I	b=
問2	cm^2
問3	

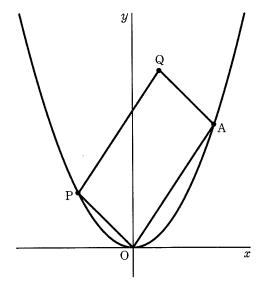
【問 22】

図で、放物線は関数 $y=\frac{1}{4}x^2$ のグラフであり、点 O は原点である。点 A は放物線上の点であり、その座標は (6,9) である。点 P は放物線上を動く点であり、その x 座標は負の数である。また、四角形 OAQP が線分 OA、OP を 2 辺とする平行四辺形となるように点 Q をとる。各問いに答えよ。

(奈良県 2009 年度)

問1. 関数 $y=\frac{1}{4}x^2$ について, x の変域が $-1 \le x \le 3$ のときの y の変域を求めよ。





問3. 点 P の座標が (-4, 4) のとき, 次の(1), (2)の問いに答えよ。

(1) 2 点 A, P を通る直線の式を求めよ。

(2) x軸上に点 R をとる。 \triangle OAR の面積と \triangle OAQ の面積が等しくなるとき,点 R の x座標をすべて求めよ。

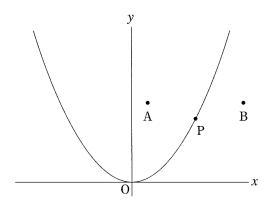
問1				
問2		(,)
問3	(1)			
	(2)			

【問 23】

図のように、関数 $y=\frac{1}{4}x^2$ のグラフがある。また、点 A (1, 5), B (7, 5) がある。点 P は、 $y=\frac{1}{4}x^2$ のグラフ上にあるものとする。このとき、次の(1)、(2)に答えなさい。

(和歌山県 2009 年度)

(1) P O x座標が 4 Oとき, y座標を求めなさい。



(2) △PAB の面積が 12 となる P の座標をすべて求めなさい。

(1)	(1)	
(2)	(2)	

【問 24】

図 I のように関数 $y=\frac{a}{x}$ (x>0) …①,関数 $y=bx^2$ …②のグラフと、これらと交わる直線 ℓ がある。①のグラフ と直線 ℓ との交点は点 A (2,16) であり,①のグラフと②のグラフの交点 B の x 座標は 4 である。また,②のグラフと 直線 ℓ との交点のうち,y 軸より右側にある点 C の x 座標は 6 である。このとき,次の各問いに答えなさい。

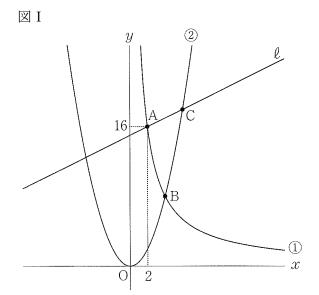
(鳥取県 2009 年度)

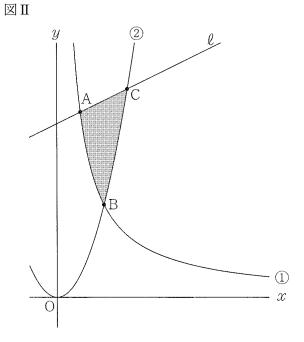
問1. a, bの値を求めなさい。

問2. 直線ℓの方程式を求めなさい。

問3. △ABC の面積を求めなさい。

問4. ①, ②のグラフおよび直線ℓで囲まれる部分のうち, 図 II に示す色のついた部分にあり, x 座標, y 座標ともに 整数である点の個数を求めなさい。ただし, ①, ②のグラフおよび直線ℓ上の点は含まないものとする。





問1	a=
	b=
問2	
問3	
問4	個

【問 25】

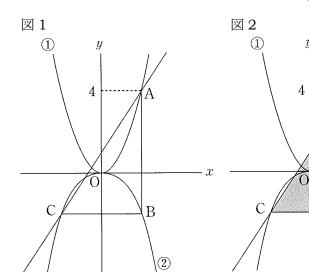
図 1 のように、2 つの関数 $y=x^2$ …①と $y=-\frac{1}{2}x^2$ …②のグラフがある。①のグラフの上の点で、y 座標は 4、x 座標が正である点を A とする。点 A を通って y 軸に平行な直線と②のグラフの交点を B、点 B を通って x 軸に平行な直線と②のグラフの交点のうち、B と異なる点を C とする。次の(1)~(3)に答えなさい。

(島根県 2009 年度)

В

D

(1) 点 A の x 座標を求めなさい。



(2) 直線 AC の式を求めなさい。

(3) 図 2 のように、 直線 BC と y 軸との交点を D とする。 三角形 ACD を直線 AB を軸として 1 回転してできる立体 の体積を求めなさい。

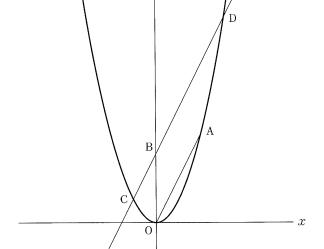
(1)	
(2)	
(3)	

【問 26】

図のように、関数 $y=x^2$ のグラフ上に点 A (2, 4), y 軸上に点 B (0, a) があります。点 B を通り OA に平行な直線と、関数 $y=x^2$ のグラフとの 2 つの交点のうち、x 座標が小さい方を C、大きい方を D とします。ただし、a>0 とします。これについて、次の問1~問3に答えなさい。

(広島県 2009 年度)

問1. a=5 のとき、 \triangle ACO の面積を求めなさい。



問2. 四角形 ABCO が平行四辺形となるとき、aの値を求めなさい。

問3. 点 $D \mathcal{O} y$ 座標が点 $C \mathcal{O} y$ 座標の 16 倍となるとき点 $C \mathcal{O} x$ 座標を求めなさい。

問1		
問2		
問3		

【問 27】

図は、関数 $y=2x^2$ のグラフと、関数 $y=ax^2$ のグラフを同じ座標軸を使ってかいたものであり、2 つのグラフは x 軸について対称である。関数 $y=2x^2$ のグラフ上には、2 点 A (-2,8),B があり、線分 AB は x 軸に平行である。次の問1、間2に答えなさい。

(山口県 2009 年度)

問1. aの値を求めなさい。

A(-2,8) $y = 2x^{2}$ B $y = ax^{2}$

問2. 原点 O と 2 点 A, B を頂点とする△OAB の面積を求めなさい。

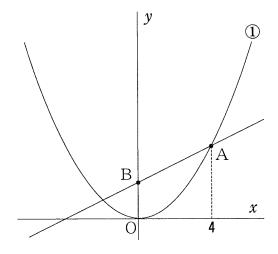
問1	a=
問2	

【問 28】

図で、点 O は原点であり、放物線①は関数 $y=\frac{1}{4}x^2$ のグラフである。点 A は放物線①上の点で、その x 座標は A である。点 A を通り、傾きが $\frac{1}{2}$ の直線と y 軸との交点を B とする。これについて、次の(1)、(2)の問いに答えよ。

(香川県 2009 年度)

(1) 関数 $y = \frac{1}{4} x^2$ について, x の値が 2 から 6 まで増加するとき の変化の割合を求めよ。



(2) y 軸上に、y 座標が正の数である点 P をとる。点 O と点 A、点 P と点 A をそれぞれ結ぶ。 $\triangle PAB$ の面積が、 \triangle OAB の面積の 2 倍であるとき、点 P の座標を求めよ。

(1)			
(2)	点 P の座標(,)

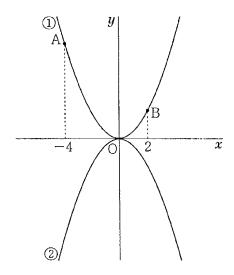
【問 29】

図において、①は $y=\frac{1}{2}x^2$ 、②は、 $y=-\frac{1}{2}x^2$ のグラフである。点 A、Bは①のグラフ上にあり、x座標はそれぞれ -4、2 である。このとき、次の問1~問3に答えなさい。

(高知県 2009 年度)

問1. 点 A の y 座標を求めよ。

問2. 三角形 OAB の面積を求めよ。



問3. ①のグラフ上に点 P, ②のグラフ上に点 Q をとる。P, Q の x 座標が等しく,線分 PQ の長さが P のとき,P の P 座標をすべて求めよ。

問1	
問2	
問3	

【問 30】

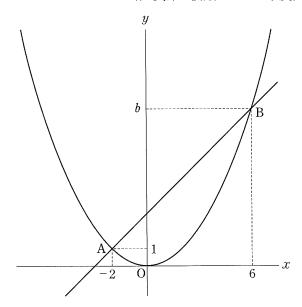
図のように、原点を O とし、関数 $y=ax^2$ のグラフ上に 2 点 A (-2, 1), B (6, b) がある。このとき、次の問1~問5に答えなさい。

(佐賀県 後期 2009年度)

問1. a, bの値を求めなさい。

問2.2点A,Bを通る直線の式を求めなさい。

問3. △OABの面積を求めなさい。



問4. 線分 AB 上に、OH LAB となるように点 H をとるとき、OH の長さを求めなさい。

問5. 点 B を通り, x 軸に平行な直線上に点 P をとり, $\triangle PAB$ の面積が $\triangle OAB$ の面積と等しくなるようにする。このとき, 点 P の x 座標を求めなさい。ただし, 点 P の x 座標は 6 より大きいものとする。

問1	a=	, <i>b</i> =
問2		
問3		
問4		
問5		

【問 31】

図 1~図 3 のように、関数 $y=2x^2$ のグラフ上に x 座標が 2 である点 A があり、関数 $y=ax^2$ のグラフ上に 2 点 B (-2,2), C (2,2) がある。このとき、次の問いに答えなさい。ただし、原点を O とする。

(長崎県 2009 年度)

問1. 点 A O y 座標を求めよ。

問2. αの値を求めよ。

問3. 直線 AB の式を求めよ。

問4. 図 2 のように、直線 AB と y 軸の交点を D とする。このとき、三角形 DBC の面積を求めよ。

問5. 図 3 のように, 関数 $y=2x^2$ のグラフ上に y 座標が等しい 2 点 P, Q があり, 関数 $y=ax^2$ のグラフ上に y 座標が等しい 2 点 R, S がある。 点 P の座標を $(t, 2t^2)$ とするとき, 四角形 PQSR が正方形となるような t の値を求めよ。ただし, t>0 とする。

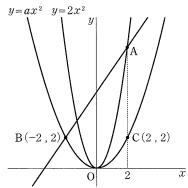


図 2

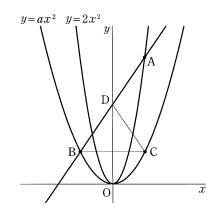
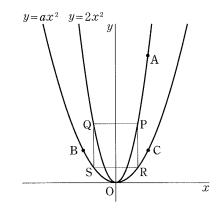


図 3



問1	
問2	a=
問3	y=
問4	
問5	t=

【問 32】

図で、2 点 A,B は関数 $y=\frac{1}{3}x^2$ のグラフ上の点で、点 A の x 座標は-3 である。また、直線 AB の傾きは正の数である。次の問1~問3に答えなさい。

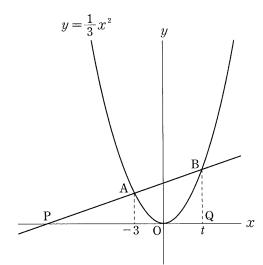
(大分県 2009 年度)

問1. 関数 $y=\frac{1}{3}x^2$ について, x の値が 1 から 5 まで増加するときの変化の割合を求めなさい。



問2. 図のように、点 B の x 座標が 6 のとき、直線 AB の式を求めなさい。

問3. 図のように、直線 AB とx 軸との交点を P、点 B から x 軸にひい た垂線と x 軸との交点を Q とする。PQ=3BQ であるとき、点 Q の x 座標を tとして、tの値を求めなさい。



問1	
問2	
問3	t=

【問 33】

図のように、2つの関数 $y=-\frac{1}{2}x^2$ …①、 $y=ax^2$ (aは定数) …②のグラフがある。点 A は関数①のグラフ上にあり、A の x 座標は-2 である。2 点 B, C は関数②のグラフ上にあり、B の x 座標は-2 である。 また、直線 AB は原点 O を通る。このとき、次の各問いに答えなさい。

(熊本県 2009 年度)

問1. aの値を求めなさい。

問2. 直線 BC の式を求めなさい。

y 0 x 1

問3. 原点 O を通り、 △ABC の面積を 2 等分する直線の式 を求めなさい。

問	1	a=	
問	2	y=	
問	3	y=	

【問 34】

図 I のように、関数 $y=ax^2$ のグラフと直線0が、2 点 A、B で交わり、点 A の x 座標は-2、点 B の座標は (4, -8) である。このとき、次の問1~問4に答えなさい。

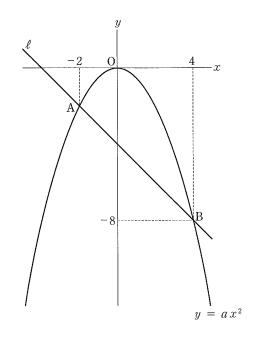
(宮崎県 2009 年度)

問1. aの値を求めなさい。

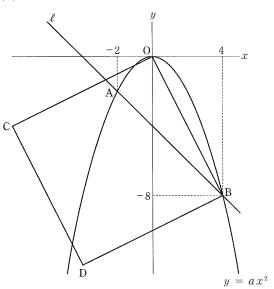
問2. 直線 ℓ と y 軸との交点の座標を求めなさい。

問3. △OAB の面積を求めなさい。

間4. 図IIは、図Iにおいて、線分OBを1辺とする正方形OCDBをかいたものである。このとき、 $\triangle ACD$ の面積を求めなさい。



図Ⅱ



問1	a =		
問2	(,)
問3			
問4			

【問 35】

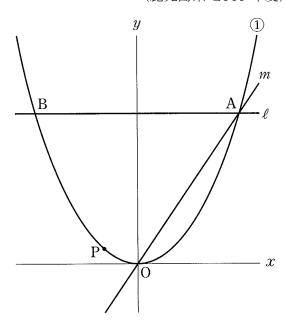
図は、点 P(-2, 1) を通る関数 $y=ax^2\cdots$ ① のグラフと、x 軸に平行な直線 ℓ を示したものであり、①のグラフと 直線 ℓ は 2 点 A, B で交わっている。ただし、点 A の x 座標は正とする。また、線分 AB の長さを 12 cm、原点 O と 点 A を通る直線を m とする。このとき、次の間1~間4に答えなさい。なお、座標の 1 目もりは 1 cm とする。

(鹿児島県 2009 年度)

問1. αの値を求めよ。

問2. 直線 m の式を求めよ。

問3. 四角形 OABP の面積は何 cm^2 か。



問4. 点 Pを通り,直線 mに平行な直線と直線 ℓ との交点を Qとする。直線 m上に点 Rをとり, $\triangle PAB$ と $\triangle RQB$ の 面積が等しくなるようにする。このとき,点 Rの座標を求めよ。ただし,点 Rの x座標は,点 Aの x座標より小さいものとする。

問1	a=		
問2			
問3			cm^2
問4	(,)

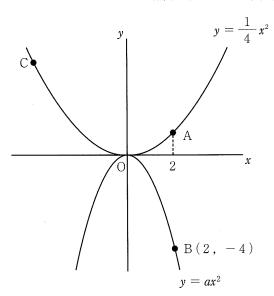
【問 36】

図のように、関数 $y=\frac{1}{4}x^2$ のグラフ上に点 A をとり、関数 $y=ax^2$ のグラフ上に点 B をとる。点 A の x 座標は 2 であり、点 B の座標は(2,-4)である。また、点 C は関数 $y=\frac{1}{4}x^2$ のグラフ上の点であり、x 座標は2 より小さいとする。このとき、次の問いに答えなさい。

(沖縄県 2009年度)

問1. aの値を求めなさい。

問2. 関数 $y=\frac{1}{4}x^2$ について, x の値が 2 から 4 まで増加すると きの変化の割合を求めなさい。



問3. △ABC の面積が 15 のとき, 点 C の座標を求めなさい。

問1	a=		
問2			
問3	C(,)