
3. 二次関数の座標・グラフ・式

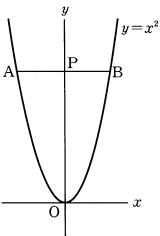
【問1】

図において、mは $y=ax^2$ のグラフを表す。aは定数である。A, Bはm上の点であり、そのx座標はそれぞれ-1、5 である。 ℓ は2点 A, B を通る直線を表し、C は ℓ と y 軸との交点である。

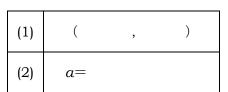
関数 $y=ax^2$ について、xの値が-1 から5 まで増加するときの変化の割合が 1 であるとき、

- aの値を求めなさい。
- ② Cのy座標を求めなさい。

1)	
2	

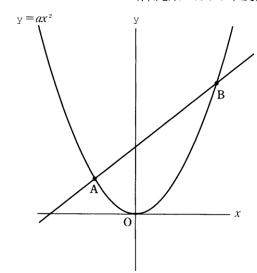

【問2】

次の(1), (2)に答えなさい。


[1] 図のように、関数 $y=x^2$ のグラフ上に、2点 A、B があり、線分 AB は x 軸に平行で、AB=6 である。

このとき、線分 AB と y 軸との交点 P の座標を求めなさい。

[2] 関数 $y=ax^2$ で、xの値が1から4まで増加するとき、変化の割合が10であった。aの値を求めなさい。


【問3】

図のように、関数 $y=ax^2$ のグラフ上に、2点 A(-2, 2)、B(4, 8)がある。 次の各問いに答えなさい。

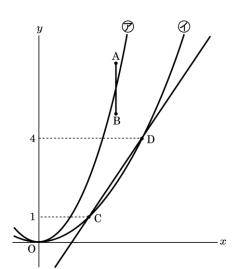
(沖縄県 2002 年度)

問1. aの値を求めなさい。

問2.2点A,Bを通る直線の式を求めなさい。

問1	a=
問2	y=

(秋田県 2003年度)

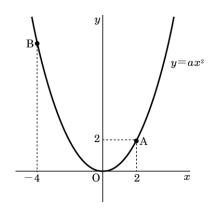

【問4】

図で、⑦は関数 $y=ax^2$ 、①は関数 $y=\frac{1}{4}x^2$ のグラフである。

① 2点 A(3,7), B(3,5)を結ぶ線分 AB がある。a の値を次のア〜エとするとき、この中で、⑦が線分 AB と交わるのはどれか。その記号を1つ書きなさい。

ア
$$a=-1$$
 イ $a=\frac{1}{3}$ ウ $a=\frac{2}{3}$ エ $a=1$

② ①上にある点 C, D は, x 座標が正で y 座標がそれぞれ 1, 4 である。 このとき, 2点 C, D を通る直線の傾きを求めなさい。


1)	
2	

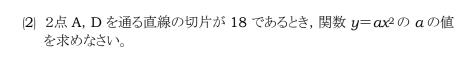
【問5】

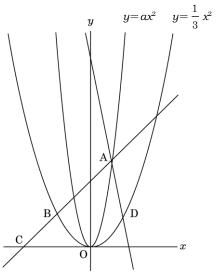
図のように、関数 $y=ax^2$ のグラフ上に2点 A, B があり、点 A の座標は(2, 2)、点 B の x 座標は-4 である。

(福島県 2003 年度)

- ① aの値を求めなさい。
- ② 点 B を通り、OA に平行な直線の式を求めなさい。

1	
2	


【問6】

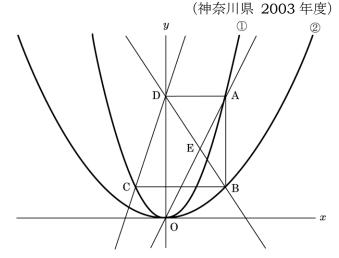

図のように、関数 $y=ax^2$ のグラフ上に点 A があり、関数 $y=\frac{1}{3}x^2$ のグラフ上に2点 B, D がある。また、2点 A, B を通る直線が x 軸と交わる点を C とする。

点 B, D の x 座標はそれぞれ-3, 3 であり, 点 C の座標は(-6,0)であるとき, 次の(1), (2)の問いに答えなさい。ただし, $\alpha>0$ とする。

(千葉県 2003 年度)

[1] 2点 A, B を通る直線の式を求めなさい。

(1)	
(2)	a=

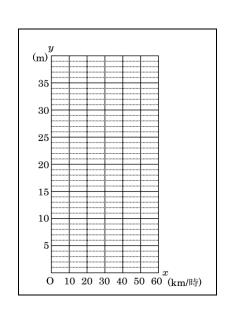

【問7】

図において、曲線①は関数 $y=x^2$ のグラフであり、曲線②は関数 $y=ax^2$ のグラフである。点 A は曲線①上の点で、その x座標は2 である。点 B は曲線②上の点で、線分 AB はy軸に平行である。また、点 C は曲線①上の点で、線分 BC はx軸に平行であり、点 C の x座標は-1 である。さらに、点 D はy軸上の点で、線分 AD はx軸に平行である。原点を O とするとき、次の問いに答えなさい。

(ア) 曲線②の式 $y=ax^2$ の aの値を求めなさい。

(イ) 直線 CD の式を y=mx+n とするとき, m, n の値を求めなさい。

(ウ) 直線BDと直線OAとの交点Eの座標を求めなさい。

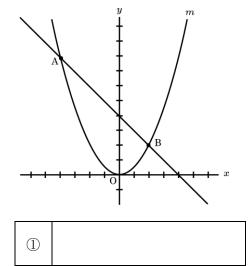

(<i>P</i>)	a=		
(₹)	m=	, n=	
(ウ)	(,)

【問8】

ある中学校では、生活委員会で、交通安全を呼びかけるポスターと旗を作ることになった。そこで、生活委員全員が、ポスター班と旗班のどちらか一方の班に入って活動を始めた。このとき、次の問いに答えなさい。

(静岡県 2003 年度)

時速 x km で走っている自動車が、ブレーキをかけてから止まるまでに進む距離を y m とすると、y は x の2乗に比例するという。ポスター班に入った A さんは、このことに注目し、ポスターに xとyの関係を表すグラフをかくことにした。 xとyの関係が $y = \frac{1}{100} x^2$ であるとして、xとy の関係を表すグラフを、解答欄にかきなさい。 ただし、x の変域を $0 \le x \le 60$ とする。

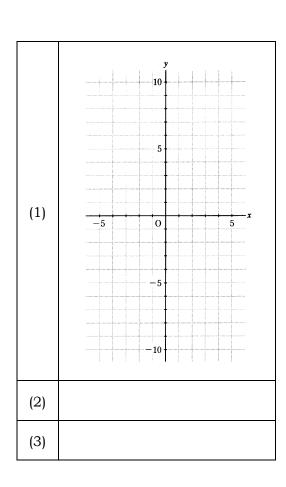

【問9】

図において, m は $y=ax^2$ のグラフを表す。a は定数である。A, B は m 上の点であり, A の座標は(-4, 8), B の x 座標は 2 である。

① aの値を求めなさい。

② 直線 AB の傾きを求めなさい。

(大阪府 前期 2003 年度)

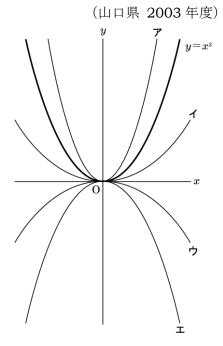

2

【問 10】

関数 $y=-2x^2$ について、次の $|1|\sim|3|$ に答えなさい。

(和歌山県 2003 年度)

- (1) この関数のグラフをかきなさい。
- |2| xの変域が $-3 \le x \le 2$ のときの yの変域を求めなさい。
- [3] xの値が1から6まで増加するときの変化の割合を求めなさい。



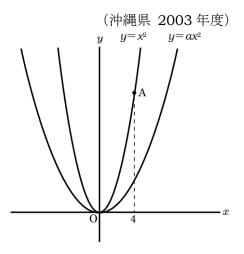
【問 11】

図のア〜エは、 $y=ax^2$ の形で表される4つの関数のグラフを、 $y=x^2$ のグラフと同じ座標軸を使ってかいたものである。次の[1]、[2]に答えなさい。

(1) ア〜エのうちの1つが、関数 $y=\frac{1}{3}x^2$ のグラフである。そのグラフを選び、記号で答えなさい。

[2] 関数 $y=x^2$ のグラフ上に、y 座標が 4 である点が2つある。その2つの点の 座標を求めなさい。

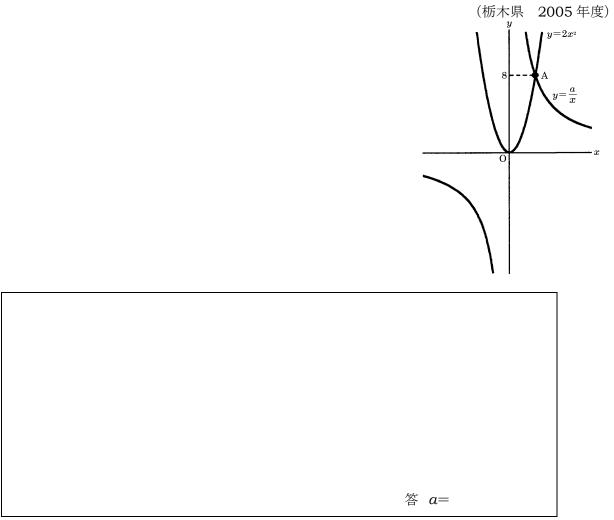
(1)			
(2)	(, 4), (, 4)


【問 12】

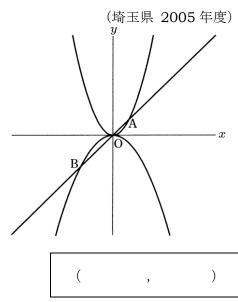
図のように、2つの放物線 $y=x^2$ と $y=ax^2$ があって、 $y=x^2$ は点 A を通る。 点 A の x 座標が 4 のとき、次の各問い に答えなさい。

1. 点 A O y 座標を求めなさい。

問2. $y=x^2$ について、xの値が2から4まで増加するときの変化の割合を求めなさい。


問3. $y=ax^2$ について, xの値が2から4まで増加するときの変化の割合が2のとき, aの値を求めなさい。

問1	
問2	
問3	

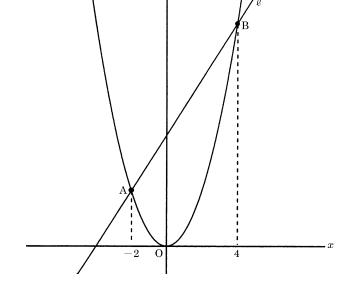

【問 13】

図のように、関数 $y=2x^2$ と関数 $y=\frac{a}{x}$ のグラフが点 A で交わっている。交点 A の x 座標は正の数で、y 座標が 8 であるとき、a の値を求めなさい。ただし、途中の計算も書くこと。

【問 14】

図で、曲線は関数 $y=x^2$ と $y=-\frac{1}{2}x^2$ のグラフです。関数 $y=x^2$ 上に x 座標が 1 となる点 A をとり、点 A と 原点 O を通る直線が関数 $y=-\frac{1}{2}x^2$ と交わる点で、原点以外の点を B とします。このとき、点 B の座標を求めなさい。

【問 15】


図のように、関数 $y=ax^2(a>0)$ のグラフと直線 ℓ が2点 A、B で交わっており、点 A、B の x座標はそれぞれ-2、4 である。

次の[1]~[4]の場合について、問いに答えなさい。

(富山県 2005年度)

(1) 点 B の y 座標が8のとき、a の値を求めなさい。

[2] 直線 ℓ の傾きが3であるとき、aの値を求めなさい。

[3] 関数 $y=ax^2$ について, x の変域が $-2 \le x \le 4$ のとき, y の変域は, $0 \le y \le 4$ であった。このとき, a の値を求めなさい。

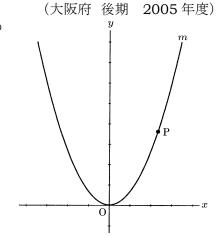
[4] a=2 のとき、直線 ℓ とy軸について対称な直線の式を求めなさい。

(1)	a=
(2)	a=
(3)	a=
(4)	y=

【問 16】

関数 $y=ax^2$ …⑦ のグラフが点(2, -8)を通るとき、次の各問いに答えなさい。

(三重県 2005 年度)

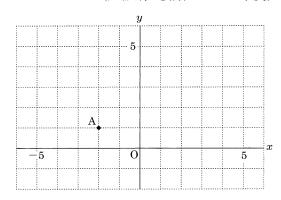

- ① aの値を求めなさい。
- ② 関数⑦のグラフをかきなさい。
- ③ xの変域が $-2 \le x \le 1$ のとき, yの変域を求めなさい。

1	a=
2	-5 O -5 x
3	$\leq y \leq$

【問 17】

図において, mは $y=\frac{2}{3}x^2$ のグラフを表す。 O は原点である。 P は m 上にあって O と異なる点である。

- ① P o x座標が 3 のとき、P を通り y 軸との交点の y 座標が 5 となる直線の式を求めなさい。
- ② $P \cap x$ 座標とy座標とが等しくなるときの $P \cap x$ 座標を求めなさい。


1)	y=		
2	Р(,)

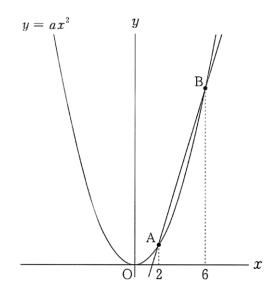
【問 18】

図において、点 A の座標は(-2, 1)である。

(大阪府 後期 2005年度)

① 関数 $y=ax^2$ のグラフが A を通るとき, a の値はいくらですか。 a を定数として求めなさい。

② 次のア〜エで示した点のうち、A を通り傾きが $\frac{1}{2}$ の直線上にあるものはどれですか。一つ選び、記号を書きなさい。

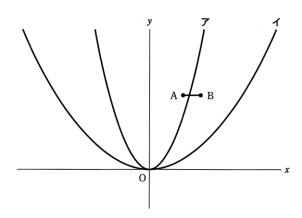

ア(-4, 2) イ(-1, 3) ウ(2, 3)
$$x(5, 4)$$

1)	
2	

【問 19】

図のように、関数 $y=ax^2$ のグラフ上に、x座標がそれぞれ 2、6 となる 2 点 A、B をとります。 直線 AB の傾きが 4 のとき、a の値を求めなさい。

(宮城県 2007 年度)



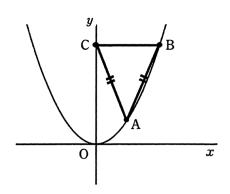
a=

【問 20】

図のように、2 点 A(2, 10), B(3, 10)がある。また、曲線アは関数 $y=ax^2$ のグラフであり、曲線イは関数 $y=\frac{1}{2}x^2$ のグラフである。このとき、次の1、2の問いに答えなさい。ただし、a>0 で、O は原点とする。

(茨城県 2007年度)

問1. α が自然数で、曲線アが線分 AB と交わるとき、 α の値を求めなさい。


問2. 関数 $y=\frac{1}{2}x^2$ において、xの変域が $-6 \le x \le m$ のとき yの変域は $2 \le y \le n$ となる。mとnの値を求めなさい。

問1	a=	
問2	m=	, n=

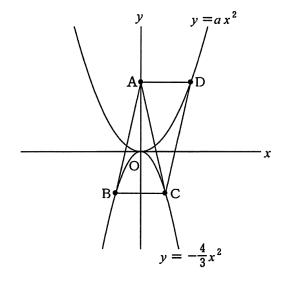
【問 21】

図のように、関数 $y=x^2$ のグラフ上に 2 点 A, B, y 軸上に点 C を、次の条件ア〜ウをみたすようにとる。このとき、次の問いに答えなさい。

(富山県 2007年度)

条件

- ア 2点 A, B 0 x 座標は正である。
- イ 2点 B, C o y 座標は等しい。
- ウ 線分AB, ACの長さは等しい。
- (1) 点 C の座標が(0, 4)のとき, 点 A の座標を求めなさい。
- (2) 点 A の座標が(2, 4)のとき, 2 点 A, B を通る直線の式を求めなさい。

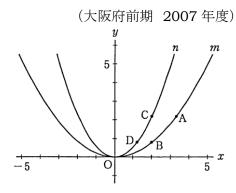

(1)	(,)	
(2)	y=			

【問 22】

図で、O は原点、A は y 軸上の点、B、C は関数 $y=-\frac{4}{3}x^2$ のグラフ上の点であり、D は関数 $y=ax^2$ (a は定数、a>0) のグラフ上の点である。また、四角形 ABCD は平行四辺形で、辺 BC は x 軸に平行である。点 D の座標が (3, 5) のとき、次の(1)、(2)の問いに答えよ。

(愛知県A 2007年度)

- (1) aの値を求めよ。
- (2) 直線 AC の式を求めよ。

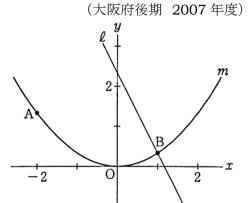


(1)	a=
(2)	y=

【問 23】

図において、mは $y=\frac{1}{5}x^2$ のグラフを表し、nは $y=\frac{5}{9}x^2$ のグラフを表す。AB は m上の点であり、C、D は n上の点である。B、C の x座標はともに 2 であり、A、D の x座標はともに正である。A の y座標とC の y座標とは等しく、B の y座標とは等しい。

- (1) A, D の座標をそれぞれ求めなさい。
- (2) 2 点 A, D を通る直線の式を求めなさい。

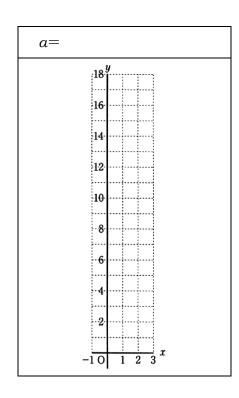


(1)	A(,), D(,)
(2)	y=				

【問 24】

図において, m は $y=\frac{1}{3}x^2$ のグラフを表す。A, B は m 上の点であり,その x 座標はそれぞれ-2, 1 である。 ℓ は,点 B を通り傾きが-2 の直線である。

- (1) Aのy座標を求めなさい。
- (2) 直線ℓの式を求めなさい。

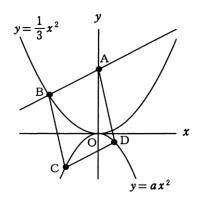


(1)	
(2)	y=

【問 25】

関数 $y=ax^2$ において、x の変域が $-1 \le x \le 3$ のとき、y の変域は $0 \le y \le 18$ である。a の値を求めよ。また、x の変域が $-1 \le x \le 3$ のときのこの関数のグラフをかけ。

(愛媛県 2007年度)

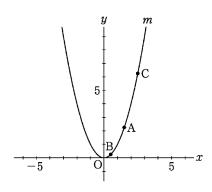


【問 26】

図で、Oは原点、Aはy軸上の点、Bは関数 $y=\frac{1}{3}x^2$ のグラフ上の点、C、Dは関数 $y=ax^2$ (aは定数、a<0) の グラフ上の点である。点 Aのy座標は 5、点 B、Cのx座標は、それぞれ-3、-2であり、四角形 ABCD は平行四 辺形である。このとき、次の(1)、(2)の問いに答えよ。

(愛知県A 2008年度)

- (1) 直線 AB の式を求めよ。
- (2) αの値を求めよ。



(1)	y=
(2)	a=

【問 27】

図において、mは関数 $y=x^2$ のグラフを表す。A, B, C は m上の点である。B の x座標は A の x座標より 1 小さく,C の x座標は A の x座標より 1 大きい。直線 BC の傾きが 3 となるときの A の x座標を求めなさい。求め方も書くこと。必要に応じて解答欄の図を用いてもよい。

(大阪府 後期 2008 年度)

求め方	
	Aのx座標

【問 28】

関数 $y=\frac{1}{2}x^2$ について、次の(1)~(3)に答えよ。

(長崎県 2008 年度)

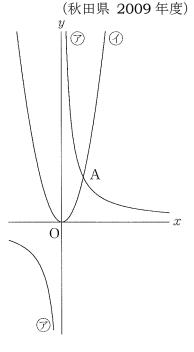
- (1) x=4 のときの y の値を求めよ。
- (2) グラフを解答用紙の図1にかけ。
- (3) xが2から4まで増加するときの変化の割合を求めよ。

(1)	y=
	図 1
	8
(2)	6
(4)	4
	2
	-4 -2 O 2 4 x
(3)	

【問 29】

図のように、関数 $y=\frac{2}{3}x^2$ のグラフ上に y 座標が等しい 2 点 A, B があります。 AB=4 のとき、点 A の x 座標と y 座標をそれぞれ求めなさい。 ただし点 B の x 座標は正とします。

(宮城県 2009 年度)

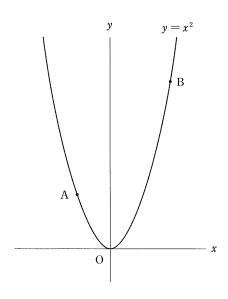

x 座標 y 座標

【問30】

図のように、2 つの関数 $y=\frac{a}{x}$ …⑦ $y=bx^2$ …① のグラフがある。関数⑦のグラフと関数①のグラフの交点 A の座標が (2,4) のとき、次のア〜ウにあてはまる数を書きなさい。

(1) 関数⑦について、aの値は $extit{r}$ である。

また、点 A を通り、傾きが-2 の直線と関数①のグラフの交点のうち点 A 以外の交点を B としたとき、点 B の x 座標は $\boxed{ 1 }$ である。

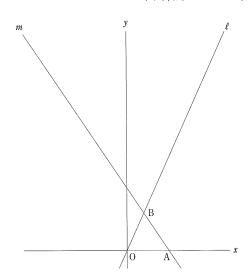


(1)	ア	
	イ	
(2)	ウ	

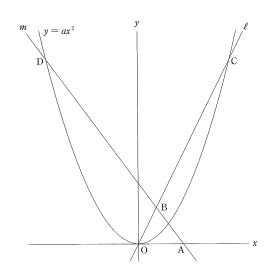
【問31】

図のように、関数 $y=x^2$ のグラフ上に 2 点 A, B がある。B の x 座標は A の x 座標より 6 大きく,B の y 座標は A の y 座標より B 大きい。このとき,A の x 座標を求めなさい。

(栃木県 2009 年度)



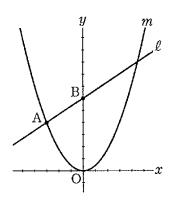
【問32】


図のように、原点 O を通る直線 ℓ と、点 A (5, 0) を通る直線 m が、点 B (2, 4) で交わっている。このとき、次の問1、問2に答えなさい。

(千葉県 2009 年度)

問1. 直線ℓの式を求めなさい。

問2. 直線 ℓ 上に点 C, 直線 m 上に点 D があり, 点 C と点 D は y 軸について線対称である。 関数 $y=ax^2$ のグラフが, 2 点 C, D を通るとき,a の値を求めなさい。 ただし,a>0 とする。

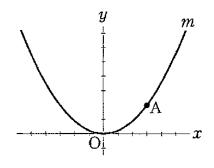

問1	
問2	a=

【問 33】

図において、mは $y=ax^2$ (aは定数) のグラフを表す。A は m上の点であり、その座標は (-3,4) である。B は y 軸上の点であり、その y 座標は 6 である。 ℓ は、2 点 A、B を通る直線である。

(大阪府 前期 2009 年度)

- (1) *a*の値を求めなさい。
- (2) 直線ℓの式を求めなさい。

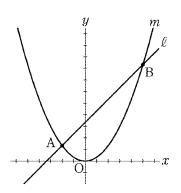


(1)	
(2)	y=

【問34】

図において、mは $y=ax^2$ (a は定数) のグラフを表す。A は m上の点であって、その座標は (3, 2) である。a の値を求めなさい。

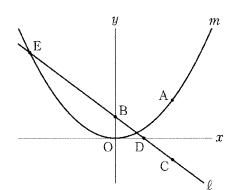
(大阪府 後期 2009 年度)


【問 35】

図において、m は $y=\frac{1}{3}x^2$ のグラフを表す。A、B は m 上の点であり,A の x 座標は-2,B の x 座標は5 である。 ℓ は,2 点 A,B を通る直線である。

(大阪府 前期 2010年度)

(1) Bの y 座標を求めなさい。

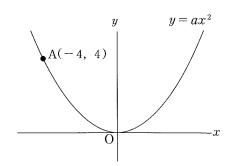

(2) 直線ℓの式を求めなさい。求め方も書くこと。

(1)		
	〔求め方〕	
(2)		
		y=

【問 36】

(1) $A \mathcal{O}_y$ 座標と $D \mathcal{O}_x$ 座標をそれぞれ t を用いて表しなさい。

(大阪府 後期 2010年度)

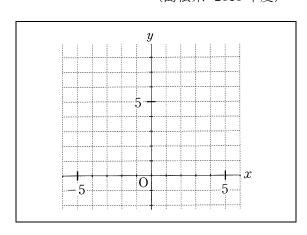

(2) Eのy座標が8であるときのtの値を求めなさい。求め方も書くこと。

(1)	A の y 座標	
(1)	Dのx座標	
	[求め方]	
(2)		
		<i>t</i> の値
		<i>1</i> ∨ ∠ E

【問 37】

図のように、関数 $y=ax^2$ のグラフ上に点 A(-4,4) があるとき、a の値を求めなさい。

(島根県 2010年度)

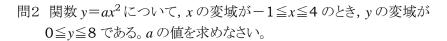


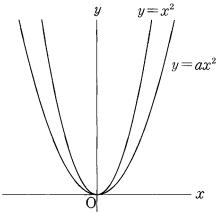
a=

【問 38】

関数 $y=\frac{1}{2}x^2$ のグラフをかきなさい。

(島根県 2010年度)


【問 39】

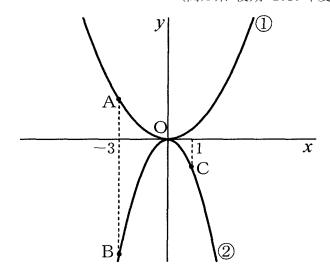

図は,関数 $y=x^2$ のグラフと関数 $y=ax^2$ のグラフを,同じ座標軸を使ってかいたものである。

次の問1、問2に答えなさい。

(山口県 2010年度)

問1 関数 $y=x^2$ のグラフ上に, y 座標が 9 である点が 2 つある。その 2 つの点の座標を求めなさい。

問1	(, 9),(, 9)
問2	a=		

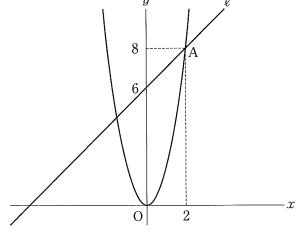

【問 40】

図において、①は関数 $y=\frac{1}{3}x^2$ 、②は関数 $y=-x^2$ のグラフである。点 A は、①のグラフ上にあり、2 点 B, C は、②のグラフ上にある。点 A, B の x 座標はともに-3 であり、点 C の x 座標は 1 である。このとき、次の問1、問2に答えなさい。

(高知県 後期 2010年度)

問1 点Aのy座標を求めよ。

問2 2点B,Cを通る直線の式を求めよ。


問1	
問2	

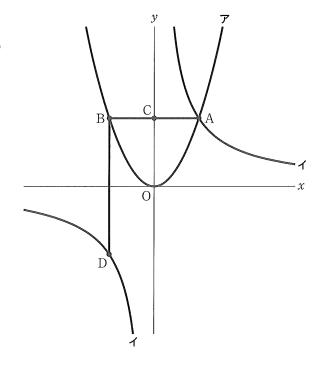
【問 41】

図のような、関数 $y=ax^2$ のグラフと直線 ℓ があり、点 A(2,8) で交わっている。また、直線 ℓ の切片は 6 である。このとき、次の (1)、(2) の問いに答えなさい。

(佐賀県 前期 2010年度)

- (1) aの値を求めなさい。
- (2) 直線ℓの式を求めなさい。

(1)	
(2)	

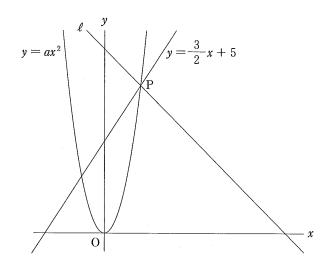

【問 42】

図において、曲線アは関数 $y=ax^2$ のグラフであり、曲線イは関数 $y=\frac{6}{x}$ のグラフである。曲線アとイの交点を A とし、曲線ア上の点で y 座標が点 A と等しく、x 座標が負である点を B とする。さらに、線分 AB と y 軸との交点を C とする。また、曲線イ上の点で x 座標が点 B と等しい点を D とする。このとき、次の問1、問2に答えなさい。ただし、a>0 で、O は原点とする。

(茨城県 2011年度)

問1 点 A O x 座標が 2 であるとき, 2 点 C, D を通る直線の式を求めなさい。

問2 直線 AD の傾きが $\frac{8}{3}$ であるとき, a の値を求めなさい。

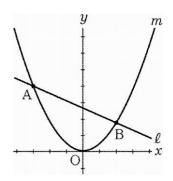


問1	
問2	a=

【問 43】

図のように、2点 (0, 10), (10, 0) を通る直線 ℓ と、関数 $y = \frac{3}{2}x + 5$ のグラフの交点を P とする。 関数 $y = ax^2$ のグラフが点 P を通るとき、a の値を求めなさい。

(千葉県 前期 2011 年度)

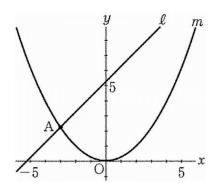


【問 44】

図において, m は $y=ax^2$ (a は定数) のグラフを表す。A, B は m 上の点であって,A の座標は (-3, 4) であり,B の x 座標は 2 である。 ℓ は,2 点 A, B を通る直線である。

(大阪府 前期 2011 年度)

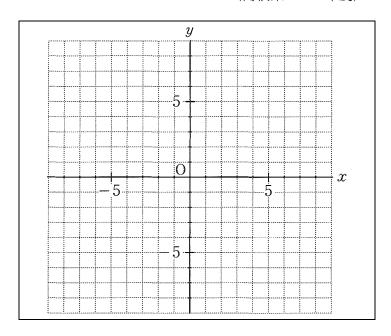
- (1) aの値を求めなさい。
- (2) 直線ℓの式を求めなさい。求め方も書くこと。


(1)		
	〔求め方〕	
(2)		
		y=

【問 45】

図において、m は $y=\frac{1}{4}x^2$ のグラフを表す。A は m 上の点であり、その x 座標は-3 である。 ℓ は、点 A を通り傾きが 1 の直線である。

(大阪府 後期 2011年度)


- (1) Aのy座標を求めなさい。
- (2) 直線ℓの式を求めなさい。

(1)	
(2)	<i>y</i> =

関数 $y=-x^2$ のグラフをかきなさい。

(島根県 2011年度)

